Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37024280

RESUMEN

AIMS: Flow cytometry (FC) is a good way to enumerate the number of viable cells in suspension but is not adapted to mature biofilm analysis. The aim of this study is to investigate the effect of mechanical treatment coupled with enzymatic hydrolysis of biofilm matrix on FC viability analysis of biofilm cells. METHODS AND RESULTS: Biofilm was grown for 300 h of continuous fermentation on polyurethane foams. Fermentation was stopped, and the biofilm was detached by agitating the foams in PBS buffer with vortex agitation for 2 min. The best enzymatic hydrolysis consisted of sequential use of DNase I and proteinase K incubated for 1 h at 34°C. Biofilm cells detached from polyurethane foams were stained with both propidium iodide (PI) and carboxyfluoresceine diacetate and analyzed by FC. FC analysis performed after vortex agitation revealed the presence of high non-fluorescent events (78.9% ± 3.3%). After enzymatic treatment, a cell population was extracted from background noise and could be observed on FSC-SSC profile. The non-fluorescent events of this cell population decreased drastically to 41.9% ± 6.6%, and the percentage of viable cells was enhanced from 2.6% ± 0.9% to 38.2% ± 4.0% compared to analysis performed after mechanical treatment alone. CONCLUSIONS: Consequently, protease and nuclease activity are essential to hydrolyze extra polymeric substances prior to FC viability analysis in mature biofilm formed by Clostridium beijerinckii.


Asunto(s)
Clostridium beijerinckii , Matriz Extracelular de Sustancias Poliméricas , Poliuretanos , Citometría de Flujo/métodos , Fermentación
2.
Gut Microbes ; 8(2): 98-112, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-27918230

RESUMEN

Undernutrition remains one of the most pressing global health challenges today, contributing to nearly half of all deaths in children under five years of age. Although insufficient dietary intake and environmental enteric dysfunction are often inciting factors, evidence now suggests that unhealthy gut microbial populations perpetuate the vicious cycle of pathophysiology that results in persistent growth impairment in children. The metagenomics era has facilitated new research identifying an altered microbiome in undernourished hosts and has provided insight into a number of mechanisms by which these alterations may affect growth. This article summarizes a range of observational studies that highlight differences in the composition and function of gut microbiota between undernourished and healthy children; discusses dietary, environmental and host factors that shape this altered microbiome; examines the consequences of these changes on host physiology; and considers opportunities for microbiome-targeting therapies to combat the global challenge of child undernutrition.


Asunto(s)
Microbioma Gastrointestinal , Intestinos/microbiología , Desnutrición/microbiología , Animales , Humanos , Mucosa Intestinal/metabolismo , Desnutrición/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...