Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 8: 221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473771

RESUMEN

Mutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband.

2.
Sci Rep ; 7(1): 691, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28386062

RESUMEN

The hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 °C there are large, progressive increases in N-domain Ca2+-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a sharp transition above 30-40 °C, indicating a temperature-dependent conformational change that is most prominent around the mutated EF-hand IV, as well as throughout the C-domain. Smaller, isolated changes occur in the N-domain. Cardiac skinned fibres reconstituted with D145E are more sensitive to Ca2+ than fibres reconstituted with wild-type, and this defect is amplified near body-temperature. We speculate that the D145E mutation destabilises the native conformation of EF-hand IV, leading to a transient unfolding and dissociation of helix H that becomes more prominent at higher temperatures. This creates exposed hydrophobic surfaces that may be capable of binding unnaturally to a variety of targets, possibly including the N-domain of cTnC when it is in its open Ca2+-saturated state. This would constitute a potential route for propagating signals from one end of TnC to the other.


Asunto(s)
Amidas/química , Calcio/metabolismo , Hidrógeno/química , Mutación , Dominios y Motivos de Interacción de Proteínas , Troponina C/genética , Troponina C/metabolismo , Alelos , Sustitución de Aminoácidos , Sitios de Unión , Calcio/química , Dicroismo Circular , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad , Temperatura , Termodinámica , Troponina C/química
3.
J Mol Cell Cardiol ; 60: 8-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23570978

RESUMEN

Myocardial infarction (MI) is a major risk for ventricular arrhythmia. Pause-triggered ventricular arrhythmia can be caused by increased myofilament Ca binding due to sarcomeric mutations or Ca-sensitizing compounds. Myofilament Ca sensitivity is also increased after MI. Here we hypothesize that MI increases risk for pause-triggered ventricular arrhythmias, which can be prevented by myofilament Ca-desensitization and contractile uncoupling. To test this hypothesis, we generated a murine chronic MI model using male B6SJLF1/J mice (n=40) that underwent permanent ligation of the left anterior descending coronary artery. 4 weeks post MI, cardiac structure, function and myofilament Ca sensitivity were evaluated. Pause-dependent arrhythmia susceptibility was quantified in isolated hearts with pacing trains of increasing frequency, followed by a pause and an extra stimulus. Coronary ligation resulted in a mean infarct size of 39.6±5.7% LV and fractional shortening on echocardiography was reduced by 40% compared to non-infarcted controls. Myofilament Ca sensitivity was significantly increased in post MI hearts (pCa50: Control=5.66±0.03; MI=5.84±0.05; P<0.01). Exposure to the Ca desensitizer/contractile uncoupler blebbistatin (BLEB, 3 µM) reduced myofilament Ca sensitivity of MI hearts to that of control hearts and selectively reduced the frequency of post-pause ectopic beats (MI 0.12±0.04 vs MI+BLEB 0.01±0.005 PVC/pause; P=0.02). BLEB also reduced the incidence of ventricular tachycardia in chronic MI hearts from 59% to 10% (P<0.05). We conclude that chronic MI hearts exhibit increased myofilament Ca sensitivity and pause-triggered ventricular arrhythmias, which can be prevented by blebbistatin. Decreasing myofilament Ca sensitivity may be a strategy to reduce arrhythmia burden after MI.


Asunto(s)
Calcio/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miofibrillas/metabolismo , Taquicardia Ventricular/metabolismo , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Masculino , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Miofibrillas/patología , Taquicardia Ventricular/patología
4.
Pflugers Arch ; 456(6): 1177-87, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18386050

RESUMEN

In vertebrate skeletal muscle, the C-domain of troponin C (TnC) serves as an anchor; the N-domain regulates the position of troponin-tropomyosin on the thin filament after changes in intracellular Ca2+. Another type of thin-filament regulation is provided by cross-bridges. In this study, we use skinned fibers reconstituted with chicken recombinant TnC (rTnC) to examine TnC-thin filament affinity when cross-bridges containing different ligands are formed. Dissociation and equilibrium binding of apo-TnC (i.e., lacking divalent cations) under different conditions were monitored by a standard test for maximum tension (P (o)). After 10 min in low-Mg2+ relaxing solution, rTnC dissociation (i.e., tension loss) was 80% vs only 45% in rigor. In rigor, adding myosin subfragment 1 (S1) reduced dissociation approximately twofold, whereas stretching to reduce filament overlap increased dissociation to nearly the value for relaxed fibers. Dissociation of rTnC after addition of Pi or MgADP to form A.M.Pi or A.M.ADP cross-bridges was significantly greater than with rigor (A.M) bridges. The increase in P (o) during equilibration with different concentrations of rTnC showed that the affinity for rTnC binding to the thin filament increased progressively with stronger cross-bridges: rTnC concentrations for half-maximal reconstitution (K (0.5)) were 8.1, 3.7, 2.9, and 1.1 microM for A + M.ADP.Pi, A.M.Pi, A.M, and A.M + S1. Cross-bridges containing MgADP(-) (A.M.ADP) were also less effective than rigor bridges in promoting rTnC binding. We conclude that cross-bridge state and number both modulate TnC affinity for the thin filament and that the TnC C-domain is a central element in this pathway.


Asunto(s)
Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Troponina C/metabolismo , Actomiosina/química , Adenosina Difosfato/química , Adenosina Trifosfato/química , Animales , Calcio/química , Cationes Bivalentes/química , Pollos , Indicadores y Reactivos , Ligandos , Magnesio/química , Miosinas/química , Fosfatos/química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...