Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 452, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974342

RESUMEN

Mycobacteria grow by inserting new cell wall material in discrete zones at the cell poles. This pattern implies that polar growth zones must be assembled de novo at each division, but the mechanisms that control the initiation of new pole growth are unknown. Here, we combine time-lapse optical and atomic force microscopy to measure single-cell pole growth in mycobacteria with nanometer-scale precision. We show that single-cell growth is biphasic due to a lag phase of variable duration before the new pole transitions from slow to fast growth. This transition and cell division are independent events. The difference between the lag and interdivision times determines the degree of single-cell growth asymmetry, which is high in fast-growing species and low in slow-growing species. We propose a biphasic growth model that is distinct from previous unipolar and bipolar models and resembles "new end take off" (NETO) dynamics of polar growth in fission yeast.


Asunto(s)
Modelos Biológicos , Mycobacterium/citología , Mycobacterium/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía de Fuerza Atómica , Mycobacterium/genética , Análisis Espacio-Temporal , Imagen de Lapso de Tiempo
2.
Nat Microbiol ; 2: 17094, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28650475

RESUMEN

Cell division is tightly controlled in space and time to maintain cell size and ploidy within narrow bounds. In bacteria, the canonical Minicell (Min) and nucleoid occlusion (Noc) systems together ensure that division is restricted to midcell after completion of chromosome segregation1. It is unknown how division site selection is controlled in bacteria that lack homologues of the Min and Noc proteins, including mycobacteria responsible for tuberculosis and other chronic infections2. Here, we use correlated optical and atomic-force microscopy3,4 to demonstrate that morphological landmarks (waveform troughs) on the undulating surface of mycobacterial cells correspond to future sites of cell division. Newborn cells inherit wave troughs from the (grand)mother cell and ultimately divide at the centre-most wave trough, making these morphological features the earliest known landmark of future division sites. In cells lacking the chromosome partitioning (Par) system, missegregation of chromosomes is accompanied by asymmetric cell division at off-centre wave troughs, resulting in the formation of anucleate cells. These results demonstrate that inherited morphological landmarks and chromosome positioning together restrict mycobacterial division to the midcell position.


Asunto(s)
División Celular/genética , Cromosomas Bacterianos/genética , Mycobacterium/fisiología , Mycobacterium/ultraestructura , División Celular Asimétrica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Segregación Cromosómica , Microscopía , Microscopía de Fuerza Atómica , Mycobacterium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...