Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 7(3): e2201477, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642827

RESUMEN

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.


Asunto(s)
COVID-19 , Microfluídica , Humanos , Microfluídica/métodos , SARS-CoV-2 , Anticuerpos , Saccharomyces cerevisiae/genética
2.
iScience ; 25(8): 104705, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35813873

RESUMEN

Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent patient with COVID-19, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 D614G, beta, gamma, and delta infection in vitro, with three mAbs neutralizing omicron as well. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta, and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 µg/mL, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.

3.
Lab Chip ; 21(19): 3627-3654, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34505611

RESUMEN

Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Especificidad de Anticuerpos , Humanos
4.
Anal Bioanal Chem ; 413(20): 4925-4937, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34184101

RESUMEN

Testing multiple biomarkers, as opposed to one, has become a preferred approach for diagnosing many heterogeneous diseases, such as cancer and infectious diseases. However, numerous technologies, including gold standard ELISA and PCR, can detect only one type of biomarker, either protein or nucleic acid (NA), respectively. In this work, we report for the first time simultaneous detection of proteins and NAs in the same solution, using solely functional NA (FNA) molecules. In particular, we combined the thrombin binding aptamer (TBA) and the 10-23 RNA-cleaving DNA enzyme (DNAzyme) in a single aptazyme molecule (Aptazyme1.15-3'), followed by extensive optimization of buffer composition, sequences and component ratios, to establish a competitive bioassay. Subsequently, to establish a multiplex bioassay, we designed a new aptazyme (Aptazyme2.20-5') by replacing the target recognition and substrate sequences within Aptazyme1.15-3'. This designing process included an in silico study, revealing the impact of the target recognition sequence on the aptazyme secondary structure and its catalytic activity. After proving the functionality of the new aptazyme in a singleplex bioassay, we demonstrated the capability of the two aptazymes to simultaneously detect thrombin and NA target, or two NA targets in a multiplex bioassay. High specificity in target detection was achieved with the limits of detection in the low nanomolar range, comparable to the singleplex bioassays. The presented results deepen the barely explored features of FNA for diagnosing multiple targets of different origins, adding an extra functionality to their catalogue.


Asunto(s)
Bioensayo/métodos , Técnicas Biosensibles/métodos , ADN Catalítico/metabolismo , ADN/química , Ácidos Nucleicos/química , Trombina/química , ADN Catalítico/química , Humanos , Nanotecnología , Reproducibilidad de los Resultados
5.
Biosens Bioelectron ; 152: 112017, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941617

RESUMEN

In disease diagnostics, single- and multiplex nucleic acid (NA) detection, with the potential to discriminate mutated strands, is of paramount importance. Current techniques that rely on target amplification or protein-enzyme based signal amplification are highly relevant, yet still plagued by diverse drawbacks including erroneous target amplification, and the limited stability of protein enzymes. As a solution, we present a multicomponent nucleic acid enzymes (MNAzymes)-based system for singleplex and multiplex detection of NA targets in microwells down to femtomolar (fM) concentrations, without the need for any target amplification or protein enzymes, while operating at room temperature and with single base-pair resolution. After successful validation of the MNAzymes in solution, their performance was further verified on beads in bulk and in femtoliter-sized microwells. The latter is not only a highly simplified system compared to previous microwell-based bioassays but, with the detection limit of 180 fM, it is to-date the most sensitive NAzyme-mediated, bead-based approach, that does not rely on target amplification or any additional signal amplification strategies. Furthermore, we demonstrated, for the first time, multiplexed target detection in microwells, both from buffer and nasopharyngeal swab samples, and presented superior single base-pair resolution of this assay. Because of the design flexibility of MNAzymes and direct demonstration in swab samples, this system holds great promise for multiplexed detection in other clinically relevant matrices without the need for any additional NA or protein components. Moreover, these findings open up the potential for the development of next-generation, protein-free diagnostic tools, including digital assays with single-molecule resolution.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Emparejamiento Base , Humanos , Límite de Detección , Imanes/química , Nasofaringe/química
6.
Microsyst Nanoeng ; 5: 25, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231538

RESUMEN

Patterning of micro- and nanoscale topologies and surface properties of polymer devices is of particular importance for a broad range of life science applications, including cell-adhesion assays and highly sensitive bioassays. The manufacturing of such devices necessitates cumbersome multiple-step fabrication procedures and results in surface properties which degrade over time. This critically hinders their wide-spread dissemination. Here, we simultaneously mold and surface energy pattern microstructures in off-stoichiometric thiol-ene by area-selective monomer self-assembly in a rapid micro-reaction injection molding cycle. We replicated arrays of 1,843,650 hydrophilic-in-hydrophobic femtolitre-wells with long-term stable surface properties and magnetically trapped beads with 75% and 87.2% efficiency in single- and multiple-seeding events, respectively. These results form the basis for ultrasensitive digital biosensors, specifically, and for the fabrication of medical devices and life science research tools, generally.

7.
Anal Bioanal Chem ; 411(1): 205-215, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30341659

RESUMEN

DNA- and MNAzymes are nucleic acid-based enzymes (NAzymes), which infiltrated the otherwise protein-rich field of enzymology three decades ago. The 10-23 core NAzymes are one of the most widely used and well-characterized NAzymes, but often require elevated working temperatures or additional complex modifications for implementation at standard room temperatures. Here, we present a generally applicable method, based on thermodynamic principles governing hybridization, to re-engineer the existing 10-23 core NAzymes for use at 23 °C. To establish this, we first assessed the activity of conventional NAzymes in the presence of cleavable and non-cleavable substrate at 23 °C as well as over a temperature gradient. These tests pointed towards a non-catalytic mechanism of signal generation at 23 °C, suggesting that conventional NAzymes are not suited for use at this temperature. Following this, several novel NAzyme-substrate complexes were re-engineered from the conventional ones and screened for their performance at 23 °C. The complex with substrate and substrate-binding arms of the NAzymes shortened by four nucleotides on each terminus demonstrated efficient catalytic activity at 23 °C. This has been further validated over a dilution of enzymes or enzyme components, revealing their superior performance at 23 °C compared to the conventional 10-23 core NAzymes at their standard operating temperature of 55 °C. Finally, the proposed approach was applied to successfully re-engineer three other new MNAzymes for activity at 23 °C. As such, these re-engineered NAzymes present a remarkable addition to the field by further widening the diverse repertoire of NAzyme applications.


Asunto(s)
ADN Catalítico/química , ADN Catalítico/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN/química , Ingeniería de Proteínas , Catálisis , Reproducibilidad de los Resultados , Especificidad por Sustrato , Temperatura , Termodinámica
8.
Materials (Basel) ; 11(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388800

RESUMEN

In recent years, Teflon-on-glass microwells have been successfully implemented in bead-based digital bioassays for the sensitive detection of single target molecules. Their hydrophilic-in-hydrophobic (HIH) nature enables the isolation and analysis of individual beads, carrying the target molecules, which can be further manipulated accurately through optical tweezer (OT) setups. However, these Teflon HIH-microwell platforms are conventionally fabricated through a complex, time-consuming and labor-intensive dry lift-off procedure which involves a series of major steps, limiting the up-scaling potential of these platforms. Alternative Teflon-based microwell fabrication methods have been extensively explored in literature but they preclude the generation of hydrophobic wells with hydrophilic bottom, thereby hampering the bioassay performance. Here, we present a new Teflon-on-glass molding method for the high throughput fabrication of hydrophilic-in-hydrophobic (HIH) microwell arrays, able to empower bead-based digital bioassays. Microwells 2.95 µm in depth and 3.86 µm in diameter were obtained to host individual beads. In these microwell arrays, sealing of reagents was demonstrated with an efficiency of 100% and seeding of superparamagnetic beads was achieved with an efficiency of 99.6%. The proposed method requires half as many steps when compared to the traditional dry lift-off process, is freely scalable and has the potential to be implemented in different bead-based bioassay applications.

9.
Anal Chim Acta ; 1015: 74-81, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29530254

RESUMEN

The close correlation between Tau pathology and Alzheimer's disease (AD) progression makes this protein a suitable biomarker for diagnosis and monitoring of the disorder evolution. However, the use of Tau in diagnostics has been hampered, as it currently requires collection of cerebrospinal fluid (CSF), which is an invasive clinical procedure. Although measuring Tau-levels in blood plasma would be favorable, the concentrations are below the detection limit of a conventional ELISA. In this work, we developed a digital ELISA for the quantification of attomolar protein Tau concentrations in both buffer and biological samples. Individual Tau molecules were first captured on the surface of magnetic particles using in-house developed antibodies and subsequently isolated into the femtoliter-sized wells of a 2 × 2 mm2 microwell array. Combination of high-affinity antibodies, optimal assay conditions and a digital quantification approach resulted in a 24 ±â€¯7 aM limit of detection (LOD) in buffer samples. Additionally, a dynamic range of 6 orders of magnitude was achieved by combining the digital readout with an analogue approach, allowing quantification from attomolar to picomolar levels of Tau using the same platform. This proves the compatibility of the presented assay with the wide range of Tau concentrations encountered in different biological samples. Next, the developed digital assay was applied to detect total Tau levels in spiked blood plasma. A similar LOD (55 ±â€¯29 aM) was obtained compared to the buffer samples, which was 5000-fold more sensitive than commercially available ELISAs and even outperformed previously reported digital assays with 10-fold increase in sensitivity. Finally, the performance of the developed digital ELISA was assessed by quantifying protein Tau in three clinical CSF samples. Here, a high correlation (i.e. Pearson coefficient of 0.99) was found between the measured percentage of active particles and the reference protein Tau values. The presented digital ELISA technology has great capacity in unlocking the potential of Tau as biomarker for early AD diagnosis.


Asunto(s)
Enfermedad de Alzheimer/sangre , Ensayo de Inmunoadsorción Enzimática , Proteínas tau/sangre , Biomarcadores/sangre , Humanos
10.
ACS Sens ; 3(2): 264-284, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29363316

RESUMEN

Over the last decades, the study of cells, nucleic acid molecules, and proteins has evolved from ensemble measurements to so-called single-entity studies. The latter offers huge benefits, not only as biological research tools to examine heterogeneities among individual entities within a population, but also as biosensing tools for medical diagnostics, which can reach the ultimate sensitivity by detecting single targets. Whereas various techniques for single-entity detection have been reported, this review focuses on microfluidic systems that physically confine single targets in small reaction volumes. We categorize these techniques as droplet-, microchamber-, and nanostructure-based and provide an overview of their implementation for studying single cells, nucleic acids, and proteins. We furthermore reflect on the advantages and limitations of these techniques and highlight future opportunities in the field.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Analíticas Microfluídicas/métodos , Análisis de la Célula Individual/métodos , Técnicas Biosensibles/tendencias , Técnicas Analíticas Microfluídicas/tendencias , Ácidos Nucleicos/análisis , Proteínas/análisis , Análisis de la Célula Individual/tendencias
11.
Mech Ageing Dev ; 161(Pt B): 288-305, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27181083

RESUMEN

Neurodegenerative disorders have a profound effect on the quality of life of patients and their environment. However, the development of adequate therapies requires accurate understanding of the underlying disease pathogenesis. On that account, yeast models can play an important role, as they enable the elucidation of the mechanisms leading to neurodegenerative disorders. Furthermore, by using so-called humanized yeast systems, the findings in yeast can be interpolated to humans. In this review, we will give an overview of the current body of knowledge on the use of yeast models with regard to Huntington's, Parkinson's and Alzheimer's disease. In addition to the results, obtained with the baker's yeast Saccharomyces cerevisiae, we also consider the existing literature on the less common but promising fission yeast Schizosaccharomyces pombe.


Asunto(s)
Modelos Biológicos , Enfermedades Neurodegenerativas , Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...