Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vet Diagn Invest ; 36(3): 329-337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38212882

RESUMEN

Infectious salmon anemia virus (ISAV; Isavirus salaris) causes an economically important disease of Atlantic salmon (Salmo salar L.). ISA outbreaks have resulted in significant losses of farmed salmon globally, often with a sudden onset. However, 2 phenotypically distinct variants of ISAV exist, each with divergent disease outcomes, associated regulations, and control measures. ISAV-HPRΔ, also known as ISAV-HPR deleted, is responsible for ISA outbreaks; ISAV-HPR0, is avirulent and is not known to cause fish mortality. Current detection methodology requires genetic sequencing of ISAV-positive samples to differentiate phenotypes, which may slow responses to disease management. To increase the speed of phenotypic determinations of ISAV, we developed a new, rapid multiplex RT-qPCR method capable of 1) detecting if a sample contains any form of ISAV, 2) discriminating whether positive samples contain HPRΔ or HPR0, and 3) validating RNA extractions with an internal control, all in a single reaction. Following assay development and optimization, we validated this new multiplex on 31 ISAV strains collected from North America and Europe (28 ISAV-HPRΔ, 3 ISAV-HPR0). Finally, we completed an inter-laboratory comparison of this multiplex qPCR with commercial ISAV testing and found that both methods provided equivalent results for ISAV detection.


Asunto(s)
Enfermedades de los Peces , Isavirus , Reacción en Cadena de la Polimerasa Multiplex , Salmo salar , Animales , Isavirus/genética , Isavirus/aislamiento & purificación , Enfermedades de los Peces/virología , Enfermedades de los Peces/diagnóstico , Salmo salar/virología , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/diagnóstico , Virulencia , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
2.
EFSA J ; 21(10): e08325, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908442

RESUMEN

Infection with Gyrodactylus salaris was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid down in Article 9 and Article 8 for listing animal species related to infection with G. salaris. The assessment was performed following the ad hoc method for data collection and assessment previously developed by AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment here performed, it is uncertain whether infection with G. salaris can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33-70% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that Infection with G. salaris does not meet the criteria in Section 1 and 3 (Category A and C; 1-5% and 10-33% probability of fulfilling the criteria, respectively) and it is uncertain whether it meets the criteria in Sections 2, 4 and 5 (Categories B, D and E; 33-80%, 33-66% and 33-80% probability of meeting the criteria, respectively). The animal species to be listed for infection with G. salaris according to Article 8 criteria are provided.

3.
EFSA J ; 21(10): e08326, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908448

RESUMEN

Bacterial kidney disease (BKD) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to BKD. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to this assessment, BKD can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (66-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that BKD does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-5%, 33-66% and 33-66% probability of meeting the criteria, respectively) but meets the criteria in Sections 4 and 5 (Categories D and E; 66-90% and 66-90% probability of meeting the criteria, respectively). The animal species to be listed for BKD according to Article 8 criteria are provided.

4.
EFSA J ; 21(10): e08327, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908450

RESUMEN

Infection with salmonid alphavirus (SAV) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to infection with SAV. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment, it was uncertain whether infection with salmonid alphavirus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-80% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that infection with salmonid alphavirus does not meet the criteria in Section 1 (Category A; 5-10% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 50-90%, probability of meeting the criteria). The animal species to be listed for infection with SAV according to Article 8 criteria are provided.

5.
EFSA J ; 21(10): e08324, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908451

RESUMEN

Spring Viraemia of Carp (SVC) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to SVC. The assessment was performed following the ad hoc method for data collection and assessment previously developed by the AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment performed here, it is uncertain whether SVC can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (45-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that SVC does not meet the criteria in Section 1 (Category A; 5-33% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 10-66%, 45-90% and 45-90% probability of meeting the criteria, respectively). The animal species to be listed for SVC according to Article 8 criteria are provided.

6.
EFSA J ; 21(8): e08173, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533748

RESUMEN

Vector or reservoir species of five mollusc diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Mollusc species on or in which Mikrocytos mackini, Perkinsus marinus, Bonamia exitiosa, Bonamia ostreae and Marteilia refringens were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, this studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected molluscs was not found, these were defined as reservoir. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir mollusc species during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that M. mackini, P. marinus, B. exitiosa B. ostreae and M. refringens will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or at aquaculture establishments or through contaminated water supply can possibly transmit these pathogens. For transmission of M. refringens, the presence of an intermediate host, a copepod, is necessary.

7.
EFSA J ; 21(8): e08172, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533749

RESUMEN

Vector or reservoir species of three diseases of crustaceans listed in the Animal Health Law were identified based on evidence generated through an extensive literature review, to support a possible updating of Regulation (EU) 2018/1882. Crustacean species on or in which Taura syndrome virus (TSV), Yellow head virus (YHV) or White spot syndrome virus (WSSV) were identified, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms of reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected crustaceans was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors during transport was collected from scientific literature. It was concluded that it is very likely to almost certain (90-100%) that WSSV, TSV and YHV will remain infective at any possible transport condition. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild or aquaculture establishments or by water supply can possibly transmit WSSV, TSV and YHV.

8.
EFSA J ; 21(8): e08174, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533750

RESUMEN

Vector or reservoir species of five fish diseases listed in the Animal Health Law were identified, based on evidence generated through an extensive literature review (ELR), to support a possible updating of Regulation (EU) 2018/1882. Fish species on or in which highly polymorphic region-deleted infectious salmon anaemia virus (HPR∆ ISAV), Koi herpes virus (KHV), epizootic haematopoietic necrosis virus (EHNV), infectious haematopoietic necrosis virus (IHNV) or viral haemorrhagic septicaemia virus (VHSV) were detected, in the field or during experiments, were classified as reservoir species with different levels of certainty depending on the diagnostic tests used. Where experimental evidence indicated transmission of the pathogen from a studied species to another known susceptible species, the studied species was classified as a vector species. Although the quantification of the risk of spread of the pathogens by the vectors or reservoir species was not part of the terms or reference, such risks do exist for the vector species, since transmission from infected vector species to susceptible species was proven. Where evidence for transmission from infected fish was not found, these were defined as reservoirs. Nonetheless, the risk of the spread of the pathogens from infected reservoir species cannot be excluded. Evidence identifying conditions that may prevent transmission by vectors or reservoir fish species during transport was collected from scientific literature. For VHSV, IHNV or HPR∆ ISAV, it was concluded that under transport conditions at temperatures below 25°C, it is likely (66-90%) they will remain infective. Therefore, vector or reservoir species that may have been exposed to these pathogens in an affected area in the wild, aquaculture establishments or through water supply can possibly transmit VHSV, IHNV or HPR∆ ISAV into a non-affected area when transported at a temperature below 25°C. The conclusion was the same for EHN and KHV; however, they are likely to remain infective under all transport temperatures.

9.
EFSA J ; 21(6): e08028, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37313317

RESUMEN

Infectious pancreatic necrosis (IPN) was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to IPN. The assessment was performed following a methodology previously published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment here performed, it is uncertain whether IPN can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that IPN does not meet the criteria in Section 1 (Category A; 0-1% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 33-66%, 50-90% and 50-99% probability of meeting the criteria, respectively). The animal species to be listed for IPN according to Article 8 criteria are provided.

10.
Virus Res ; 332: 199133, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178795

RESUMEN

In May 2015, a high mortality event in farmed rainbow trout occurred in Jeollabuk-do province in Korea. Histopathological analysis revealed necrosis in the kidney, liver, branchial arch, and gills of moribund fish, and infectious hematopoietic necrosis virus (IHNV) was detected in the lesions by immunohistochemistry. Cytopathic effects were observed in EPC, FHM, and RTG-2 cell lines after inoculation with kidney and spleen tissues and IHNV was detected by reverse transcription polymerase chain reaction (PCR). The amplified PCR product was sequenced, and phylogenetic analysis placed IHNV in the JRt Nagano group. Both in vivo and in vitro trials were performed to compare the virulence properties between RtWanju15 isolate, which causes 100% mortality in imported fry, and a previous isolate RtWanju09 of the JRt Shizuoka group isolated from eggs of healthy broodfish. In vivo challenge with high dose on specific pathogen free (SPF) rainbow trout fry performed in Denmark with isolates RtWanju09, RtWanju15 and DF04/99 isolates showed a survival rates of 60%, 37.5% and 52.5% (average), respectively without statistical difference. The replication efficiency of the two isolates in the in vitro challenge was similar.


Asunto(s)
Enfermedades de los Peces , Virus de la Necrosis Hematopoyética Infecciosa , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Animales , Virus de la Necrosis Hematopoyética Infecciosa/genética , Virulencia , Infecciones por Rhabdoviridae/veterinaria , Filogenia
11.
Front Vet Sci ; 10: 1112466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846252

RESUMEN

Piscine orthoreovirus genotype 3 (PRV-3) was first discovered in Denmark in 2017 in relation to disease outbreaks in rainbow trout (Oncorhynchus mykiss). While the virus appears to be widespread in farmed rainbow trout, disease outbreaks associated with detection of PRV-3 have only occurred in recirculating aquaculture systems, and has predominantly been observed during the winter months. To explore the possible effects of water temperature on PRV-3 infection in rainbow trout, an in vivo cohabitation trial was conducted at 5, 12, and 18°C. For each water temperature, a control tank containing mock-injected shedder fish and a tank with PRV-3 exposed fish were included. Samples were collected from all experimental groups every 2nd week post challenge (WPC) up until trial termination at 12 WPC. PRV-3 RNA load measured in heart tissue of cohabitants peaked at 6 WPC for animals maintained at 12 and 18°C, while it reached its peak at 12 WPC in fish maintained at 5°C. In addition to the time shift, significantly more virus was detected at the peak in fish maintained at 5°C compared to 12 and 18°C. In shedders, fish at 12 and 18°C cleared the infection considerably faster than the fish at 5°C: while shedders at 18 and 12°C had cleared most of the virus at 4 and 6 WPC, respectively, high virus load persisted in the shedders at 5°C until 12 WPC. Furthermore, a significant reduction in the hematocrit levels was observed in the cohabitants at 12°C in correlation with the peak in viremia at 6 WPC; no changes in hematocrit was observed at 18°C, while a non-significant reduction (due to large individual variation) trend was observed at cohabitants held at 5°C. Importantly, isg15 expression was positively correlated with PRV-3 virus load in all PRV-3 exposed groups. Immune gene expression analysis showed a distinct gene profile in PRV-3 exposed fish maintained at 5°C compared to 12 and 18°C. The immune markers mostly differentially expressed in the group at 5°C were important antiviral genes including rigi, ifit5 and rsad2 (viperin). In conclusion, these data show that low water temperature allow for significantly higher PRV-3 replication in rainbow trout, and a tendency for more severe heart pathology development in PRV-3 injected fish. Increased viral replication was mirrored by increased expression of important antiviral genes. Despite no mortality being observed in the experimental trial, the data comply with field observations of clinical disease outbreaks during winter and cold months.

12.
Vaccines (Basel) ; 10(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560472

RESUMEN

Despite the negative impact of viral hemorrhagic septicemia (VHS) and infectious hematopoietic necrosis (IHN) on European rainbow trout farming, no vaccines are commercially available in Europe. DNA vaccines are protective under experimental conditions, but testing under intensive farming conditions remains uninvestigated. Two DNA vaccines encoding the glycoproteins (G) of recent Italian VHSV and IHNV isolates were developed and tested for potency and safety under experimental conditions. Subsequently, a field vaccination trial was initiated at a disease-free hatchery. The fish were injected intramuscularly with either the VHS DNA vaccine or with a mix of VHS and IHN DNA vaccines at a dose of 1 µg/vaccine/fish, or with PBS. At 60 days post-vaccination, fish were moved to a VHSV and IHNV infected facility. Mortality started 7 days later, initially due to VHS. After 3 months, IHN became the dominant cause of disease. Accordingly, both DNA vaccinated groups displayed lower losses compared to the PBS group during the first three months, while the VHS/IHN vaccinated group subsequently had the lowest mortality. A later outbreak of ERM caused equal disease in all groups. The trial confirmed the DNA vaccines to be safe and efficient in reducing the impact of VHS and IHN in farmed rainbow trout.

13.
J Fish Dis ; 45(11): 1745-1756, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35989490

RESUMEN

European North Atlantic ranavirus (ENARV, Iridoviridae), is a ranavirus species recently isolated from lumpfish (Cyclopterus lumpus, L.), which are used as cleaner fish in Atlantic salmon (Salmo salar) farming in Northern Europe. This study aimed to investigate (1) the virulence of ENARV isolates from Ireland, Iceland and the Faroe Islands to lumpfish; (2) horizontal transmission between lumpfish; and (3) virulence to Atlantic salmon parr. Lumpfish were challenged in a cohabitation model using intraperitoneally (IP) injected shedders, and naïve cohabitants. IP challenge with isolates from Iceland (1.9 × 107 TCID50  ml-1 ) and the Faroe Islands (5.9 × 107 TCID50  ml-1 ) reduced survival in lumpfish, associated with consistent pathological changes. IP challenge with the Irish strain (8.6 × 105 TCID50  ml-1 ) did not significantly reduce survival in lumpfish, but the lower challenge titre complicated interpretation. Horizontal transmission occurred in all strains tested, but no clinical impact was demonstrated in cohabitants. Salmon parr were challenged by IP injection with the Irish isolate, no virulence or virus replication were demonstrated. A ranavirus qPCR assay, previously validated for fish ranaviruses, was first used to detect ENARV in tissues of both in lumpfish and Atlantic salmon. This study provides the first data on the assessment of virulence of ENARV isolates to lumpfish and salmon, guidelines for the diagnosis of ENARV infection, and poses a basis for further investigations into virulence markers.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Perciformes , Ranavirus , Salmo salar , Animales , Peces
14.
Viruses ; 14(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35215905

RESUMEN

Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but the relevance of this interaction for the course of infection and development of disease remains unclear. We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral RNA and infective particles were enriched in the cellular fraction of blood. While erythrocyte-associated ISAV remained infectious, erythrocytes dose-dependently limited the infection of cultured cells. Surprisingly, immunostaining of blood smears revealed expression of ISAV proteins in a small fraction of erythrocytes in one of the examined trials, confirming that ISAV can be internalised in this cell type and engage the cellular machinery in transcription and translation. However, viral protein expression in erythrocytes was rare and not required for development of disease and mortality. Furthermore, active transcription of ISAV mRNA was higher in tissues than in blood, supporting the assumption that ISAV replication predominantly takes place in endothelial cells. In conclusion, Atlantic salmon erythrocytes bind ISAV and sequester infective virus particles during infection, but do not appear to significantly contribute to ISAV replication. We discuss the implications of our findings for infection dynamics and pathogenesis of infectious salmon anaemia.


Asunto(s)
Eritrocitos/virología , Enfermedades de los Peces/virología , Isavirus/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Salmo salar/virología , Animales , Células Endoteliales/virología , Enfermedades de los Peces/sangre , Isavirus/genética , Isavirus/aislamiento & purificación , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/virología , Salmo salar/sangre , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética , Virión/aislamiento & purificación , Virión/fisiología , Replicación Viral
15.
Pathogens ; 10(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34959503

RESUMEN

Piscine orthoreovirus (PRV) infects farmed and wild salmon and trout species in North America, South America, Europe, and East Asia. PRV groups into three distinct genotypes (PRV-1, PRV-2, and PRV-3) that can vary in distribution, host specificity, and/or disease potential. Detection of the virus is currently restricted to genotype specific assays such that surveillance programs require the use of three assays to ensure universal detection of PRV. Consequently, herein, we developed, optimized, and validated a real-time reverse transcription quantitative PCR assay (RT-qPCR) that can detect all known PRV genotypes with high sensitivity and specificity. Targeting a conserved region at the 5' terminus of the M2 segment, the pan-PRV assay reliably detected all PRV genotypes with as few as five copies of RNA. The assay exclusively amplifies PRV and does not cross-react with other salmonid viruses or salmonid host genomes and can be performed as either a one- or two-step RT-qPCR. The assay is highly reproducible and robust, showing 100% agreement in test results from an inter-laboratory comparison between two laboratories in two countries. Overall, as the assay provides a single test to achieve highly sensitive pan-specific PRV detection, it is suitable for research, diagnostic, and surveillance purposes.

16.
Pathogens ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34832632

RESUMEN

The rapidly increasing Mediterranean aquaculture production of European sea bass is compromised by outbreaks of viral nervous necrosis, which can be recurrent and detrimental. In this study, we evaluated the duration of protection and immune response in sea bass given a single dose of a virus-like particle (VLP)-based vaccine. Examinations included experimental challenge with nervous necrosis virus (NNV), serological assays for NNV-specific antibody reactivity, and immune gene expression analysis. VLP-vaccinated fish showed high and superior survival in challenge both 3 and 7.5 months (1800 and 4500 dd) post-vaccination (RPS 87 and 88, OR (surviving) = 16.5 and 31.5, respectively, p < 0.01). Although not providing sterile immunity, VLP vaccination seemed to control the viral infection, as indicated by low prevalence of virus in the VLP-vaccinated survivors. High titers of neutralizing and specific antibodies were produced in VLP-vaccinated fish and persisted for at least ~9 months post-vaccination as well as after challenge. However, failure of immune sera to protect recipient fish in a passive immunization trial suggested that other immune mechanisms were important for protection. Accordingly, gene expression analysis revealed that VLP-vaccination induced a mechanistically broad immune response including upregulation of both innate and adaptive humoral and cellular components (mx, isg12, mhc I, mhc II, igm, and igt). No clinical side effects of the VLP vaccination at either tissue or performance levels were observed. The results altogether suggested the VLP-based vaccine to be suitable for clinical testing under farming conditions.

17.
Vaccines (Basel) ; 9(5)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063318

RESUMEN

Viral Nervous Necrosis (VNN) causes high mortality and reduced growth in farmed European sea bass (Dicentrarchus labrax) in the Mediterranean. In the current studies, we tested a novel Pichia-produced virus-like particle (VLP) vaccine against VNN in European sea bass, caused by the betanodavirus "Red-Spotted Grouper Nervous Necrosis Virus" (RGNNV). European sea bass were immunized with a VLP-based vaccine formulated with different concentrations of antigen and with or without adjuvant. Antibody response was evaluated by ELISA and serum neutralization. The efficacy of these VLP-vaccine formulations was evaluated by an intramuscular challenge with RGNNV at different time points (1, 2 and 10 months post-vaccination) and both dead and surviving fish were sampled to evaluate the level of viable virus in the brain. The VLP-based vaccines induced an effective protective immunity against experimental infection at 2 months post-vaccination, and even to some degree at 10 months post-vaccination. Furthermore, the vaccine formulations triggered a dose-dependent response in neutralizing antibodies. Serologic response and clinical efficacy, measured as relative percent survival (RPS), seem to be correlated with the administered dose, although for the individual fish, a high titer of neutralizing antibodies prior to challenge was not always enough to protect against disease. The efficacy of the VLP vaccine could not be improved by formulation with a water-in-oil (W/O) adjuvant. The developed RGNNV-VLPs show a promising effect as a vaccine candidate, even without adjuvant, to protect sea bass against disease caused by RGNNV. However, detection of virus in vaccinated survivors means that it cannot be ruled out that survivors can transmit the virus.

18.
J Fish Dis ; 44(7): 1033-1042, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33754342

RESUMEN

During the winter of 2013 and 2016, several Croatian fish farms experienced mortalities in the fry of European sea bass, Dicentrarchus labrax. Affected fish showed abnormal swimming behaviour and reduced appetite, and death ensued several days after the onset of clinical signs of disease. Necropsy revealed pale liver, empty digestive tract, distended gall bladder, and hyperaemia and congestion of the meninges. Routine bacteriological examination tested negative, and virological examination ruled out nodavirus infection. Histological examination revealed multifocal necrosis and extensive inflammation in the brain with abundant cellular debris in the ventricles. Inflammatory cells displayed intra-cytoplasmic basophilic vacuoles leading to suspicion of Piscirickettsia salmonis infection. Fluorescent in situ hybridization using an oligonucleotide probe targeting Domain Bacterium applied to tissue sections tested positive. The pathogen was identified by 16S rRNA gene sequencing of brain material, and the sequence showed 99% similarity with P. salmonis. This result enabled the design of an oligonucleotide probe specifically targeting P. salmonis. In 2016, P. salmonis was successfully isolated on CHAB from the brain of an affected specimen and identified using 16S rRNA gene sequencing and MALDI-TOF. This study describes the first outbreak of disease caused by P. salmonis in sea bass in Croatia, while new diagnostic tools will enable further research on its epidemiology and pathogenicity.


Asunto(s)
Acuicultura , Lubina , Enfermedades de los Peces/microbiología , Piscirickettsia , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Croacia/epidemiología , Brotes de Enfermedades , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/patología , Infecciones por Piscirickettsiaceae/epidemiología , Infecciones por Piscirickettsiaceae/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Pathogens ; 9(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036449

RESUMEN

Piscine orthoreovirus (PRV) is a relevant pathogen for salmonid aquaculture worldwide. In 2015, a new genotype of PRV (genotype 3, PRV-3) was discovered in Norway, and in 2017 PRV-3 was detected for first time in Denmark in association with complex disease cases in rainbow trout in recirculating aquaculture systems (RAS). To explore the epidemiology of PRV-3 in Denmark, a surveillance study was conducted in 2017 to 2019. Fifty-three farms, including both flow through and RAS, were screened for PRV-3. Of the farms examined, PRV-3 was detected in thirty-eight (71.7%), with the highest prevalence in grow-out farms. Notably, in Denmark disease outbreaks were only observed in RAS. Additionally, wild Atlantic salmon and brown trout populations were included in the screening, and PRV-3 was not detected in the three years where samples were obtained (2016, 2018, and 2019). Historical samples in the form of archived material at the Danish National Reference Laboratory for Fish Diseases were also tested for the presence of PRV-3, allowing us to establish that the virus has been present in Denmark at least since 1995. Sequence analyses of segment S1 and M2, as well as full genome analyses of selected isolates, did not reveal clear association between genetic makeup in these two segments and virulence in the form of disease outbreaks in the field.

20.
Conserv Physiol ; 8(1): coaa093, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995005

RESUMEN

Establishing relationships between parasite infection and physiological condition of the host can be difficult and therefore are often neglected when describing factors causing population declines. Using the parasite-host system between the parasitic nematode Contracaecum osculatum and the Eastern Baltic cod Gadus morhua, we here shed new light on how parasite load may relate to the physiological condition of a transport host. The Eastern Baltic cod is in distress, with declining nutritional conditions, disappearance of the larger fish, high natural mortality and no signs of recovery of the population. During the latest decade, high infection levels with C. osculatum have been observed in fish in the central and southern parts of the Baltic Sea. We investigated the aerobic performance, nutritional condition, organ masses, and plasma and proximate body composition of wild naturally infected G. morhua in relation to infection density with C. osculatum. Fish with high infection densities of C. osculatum had (i) decreased nutritional condition, (ii) depressed energy turnover as evidenced by reduced standard metabolic rate, (iii) reduction in the digestive organ masses, and alongside (iv) changes in the plasma, body and liver composition, and fish energy source. The significantly reduced albumin to globulin ratio in highly infected G. morhua suggests that the fish suffer from a chronic liver disease. Furthermore, fish with high infection loads had the lowest Fulton's condition factor. Yet, it remains unknown whether our results steam from a direct effect of C. osculatum, or because G. morhua in an already compromised nutritional state are more susceptible towards the parasite. Nevertheless, impairment of the physiological condition can lead to reduced swimming performance, compromising foraging success while augmenting the risk of predation, potentially leading to an increase in the natural mortality of the host. We hence argue that fish-parasite interactions must not be neglected when implementing and refining strategies to rebuild deteriorating populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...