Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 126(5): 891-904, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32578853

RESUMEN

BACKGROUND AND AIMS: The Mediterranean-type forest of central Chile is considered a 'biodiversity hotspot' and a relic of a wider ancient distribution produced by past climatic oscillations. Nothofagus macrocarpa, commonly known as 'roble de Santiago', is a threatened palaeoendemic of this forest, poorly represented in the protected area system. This tree has been repeatedly misidentified as the sister species N. obliqua, which has affected its recognition and protection. Only a few populations of N. macrocarpa remain within a matrix of intensive land use that has been affected by recent forest fires. We tested the hypothesis that current populations of N. macrocarpa are a relic state of a previously widespread range, with the aim of contributing to its identification, its biogeographical history and the design of conservation measures using genetic information. METHODS: We analysed remnant N. macrocarpa forests using nuclear (nDNA) and chloroplast DNA (cpDNA) sequences, conducted phylogenetic and phylogeographical analyses to reconstruct its biogeographical history, and assessed microsatellites [simple sequence repeats (SSRs)] to determine contemporary patters of diversity within and among all remnant populations. We also examined the degree of past, current and potential future isolation of N. macrocarpa populations using ecological niche models (ENMs). KEY RESULTS: The species N. macrocarpa was confirmed by nDNA sequences, as previously suggested by chromosomal analysis. Small isolated populations of N. macrocarpa exhibited moderate to high genetic diversity according to SSRs. cpDNA analysis revealed a marked past latitudinal geographical structure, whereas analysis of SSRs did not find such current structure. ENM analyses revealed local expansion-contraction of the N. macrocarpa range during warmer periods, particularly in the northern and central ranges where basal-most cpDNA haplotypes were detected, and recent expansion to the south of the distribution. CONCLUSIONS: Genetic patterns confirm that N. macrocarpa is a distinct species and suggest a marked latitudinal relic structure in at least two evolutionarily significant units, despite contemporary among-population gene flow. This information must be considered when choosing individuals (seeds and/or propagules) for restoration purposes, to avoid the admixture of divergent genetic stocks.


Asunto(s)
ADN de Cloroplastos , Variación Genética , Chile , Haplotipos , Filogenia , Filogeografía
2.
Sci Total Environ ; 693: 133515, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31377364

RESUMEN

Recent investigations indicate a warming of Atlantic Ocean surface waters since 1980, probably influenced by anthropic actions, inducing rainfall intensification mainly during the rainy season and slight reductions during the dry season in the Amazon. Under these climate changes, trees in upland forests (terra firme) could benefit from the intensification of the hydrological cycle and could also be affected by the reduction of precipitation during the dry season. Results of dendrochronological analyses, spatial correlations and structural equation models, showed that Scleronema micranthum (Ducke) Ducke (Malvaceae) trees exposed in fragmented areas and to edge effects in Central Amazonian terra firme forest were more sensitive to the increase in the Atlantic Ocean surface temperature and consequent northward displacement of the Intertropical Convergence Zone, mainly during the dry season. Therefore, we proved that in altered and potentially more stressful environments such as edges of fragmented forests, recent anthropogenic climatic changes are exerting pressure on tree growth dynamics, inducing alterations in their performance and, consequently, in essential processes related to ecosystem services. Changes that could affect human well-being, highlighting the need for strategies that reduce edge areas expansion in Amazon forests and anthropic climate changes of the Anthropocene.


Asunto(s)
Cambio Climático , Malvaceae/crecimiento & desarrollo , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Brasil , Lluvia , Clima Tropical
3.
PeerJ ; 7: e7085, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31218130

RESUMEN

BACKGROUND: Forest ecosystems are considered among the largest terrestrial carbon sinks. The dynamics of forest carbon depend on where the carbon is stored and its responses to environmental factors, as well as the physiology of the trees. Thus, threatened forest regions with high biodiversity have great scientific importance, such as the Sierra Madre Occidental in Mexico. A comparative analysis of tree species can expand the knowledge of the carbon cycle dynamics and ecological processes in this region. Here, we examined the growth, wood density, and carbon accumulation of two threatened species (Pseudotsuga menziesii and Cupressus lusitanica) to evaluate their hydroclimatic responsiveness. METHODS: The temporal variations in the carbon accumulation patterns of two co-occurring species (P. menziesii and C. lusitanica) and their sensitivity to the local climate were studied using dendroecological techniques, X-ray densitometry, and allometric equations. RESULTS: The results show that the annual carbon accumulation in C. lusitanica is positively associated with the temperature during the current fall, while the carbon accumulation in P. menziesii is correlated with the rainfall during the winter of the previous year. The climatic responses are associated with the intra-annual variations of wood density and ring widths for each species. The ring width was strongly correlated with carbon accumulation in C. lusitanica, while the mean wood density was linked to carbon accumulation in P. menziesii. DISCUSSION: This study has implications for the carbon accumulation rates of both species, revealing differences in the carbon capture patterns in response to climatic variations. Although the species coexist, there are variation in the hydroclimatic sensitivity of the annual carbon sequestered by trunks of trees, which would be associated with tree-ring width and/or wood density, i.e., directly by anatomical features. The results are relevant to analyze the response to the variability of climatic conditions expected in the near future of the tree communities of Sierra Madre Occidental. Therefore, this study provides a basis for modeling the long-term carbon budget projections in terrestrial ecosystems in northern Mexico.

4.
PLoS One ; 11(6): e0156782, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27272519

RESUMEN

Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.


Asunto(s)
Carbono/análisis , Pinus/fisiología , Madera/análisis , Cambio Climático , El Niño Oscilación del Sur , New Mexico , Pinus/anatomía & histología , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...