Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35142351

RESUMEN

The zebrafish has become a widely used animal model due, in large part, to its accessibility to and usefulness for high-resolution optical imaging. Although zebrafish research has historically focused mostly on early development, in recent years the fish has increasingly been used to study regeneration, cancer metastasis, behavior and other processes taking place in juvenile and adult animals. However, imaging of live adult zebrafish is extremely challenging, with survival of adult fish limited to a few tens of minutes using standard imaging methods developed for zebrafish embryos and larvae. Here, we describe a new method for imaging intubated adult zebrafish using a specially designed 3D printed chamber for long-term imaging of adult zebrafish on inverted microscope systems. We demonstrate the utility of this new system by nearly day-long observation of neutrophil recruitment to a wound area in living double-transgenic adult casper zebrafish with fluorescently labeled neutrophils and lymphatic vessels, as well as intubating and imaging the same fish repeatedly. We also show that Mexican cavefish can be intubated and imaged in the same way, demonstrating this method can be used for long-term imaging of adult animals from diverse aquatic species.


Asunto(s)
Microscopía Fluorescente/métodos , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/metabolismo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/patología , Impresión Tridimensional , Imagen de Lapso de Tiempo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
2.
Circ Res ; 128(1): 42-58, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33135960

RESUMEN

RATIONALE: The recent discovery of meningeal lymphatics in mammals is reshaping our understanding of fluid homeostasis and cellular waste management in the brain, but visualization and experimental analysis of these vessels is challenging in mammals. Although the optical clarity and experimental advantages of zebrafish have made this an essential model organism for studying lymphatic development, the existence of meningeal lymphatics has not yet been reported in this species. OBJECTIVE: Examine the intracranial space of larval, juvenile, and adult zebrafish to determine whether and where intracranial lymphatic vessels are present. METHODS AND RESULTS: Using high-resolution optical imaging of the meninges in living animals, we show that zebrafish possess a meningeal lymphatic network comparable to that found in mammals. We confirm that this network is separate from the blood vascular network and that it drains interstitial fluid from the brain. We document the developmental origins and growth of these vessels into a distinct network separated from the external lymphatics. Finally, we show that these vessels contain immune cells and perform live imaging of immune cell trafficking and transmigration in meningeal lymphatics. CONCLUSIONS: This discovery establishes the zebrafish as a important new model for experimental analysis of meningeal lymphatic development and opens up new avenues for probing meningeal lymphatic function in health and disease.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/fisiología , Meninges/fisiología , Microscopía Confocal , Imagen Óptica , Animales , Animales Modificados Genéticamente , Linfangiogénesis/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/inmunología , Meninges/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Factor C de Crecimiento Endotelial Vascular/farmacología , Pez Cebra/genética
3.
Front Cell Dev Biol ; 7: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192207

RESUMEN

Since its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease. Arndt Siekmann and Wiebke Herzog discussed novel roles for Wnt and VEGF signaling in brain angiogenesis. In addition, Brant Weinstein's lab presented data concerning the discovery of endothelium-derived macrophage-like perivascular cells in the zebrafish brain, while Monica Beltrame's studies refined the role of Sox transcription factors in vascular and lymphatic development. In this article, we will summarize the details of these recent discoveries in support of the overall value of the zebrafish model system not only to study normal development, but also associated disease states.

4.
Wiley Interdiscip Rev Dev Biol ; 7(3): e312, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436122

RESUMEN

Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hematológicas/genética , Hematopoyesis , Leucemia/genética , Pez Cebra/genética , Animales , Enfermedades Hematológicas/patología , Leucemia/patología , Pez Cebra/embriología , Pez Cebra/fisiología
5.
Development ; 144(11): 2070-2081, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28506987

RESUMEN

The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)y251 transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly.


Asunto(s)
Sistema Linfático/crecimiento & desarrollo , Sistema Linfático/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Vasos Linfáticos/metabolismo , Transgenes , Venas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Elife ; 62017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28395729

RESUMEN

The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or 'Mato Cells' in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium.


Asunto(s)
Vasos Sanguíneos/citología , Barrera Hematoencefálica/citología , Encéfalo/citología , Células Endoteliales/citología , Pez Cebra , Animales , Diferenciación Celular
7.
Dev Biol ; 419(2): 321-335, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27640326

RESUMEN

Collective cell migration is an essential process during embryonic development and diseases such as cancer, and still much remains to be learned about how cell intrinsic and environmental cues are coordinated to guide cells to their targets. The migration-dependent development of the zebrafish sensory lateral line proves to be an excellent model to study how proteoglycans control collective cell migration in a vertebrate. Proteoglycans are extracellular matrix glycoproteins essential for the control of several signaling pathways including Wnt/ß-catenin, Fgf, BMP and Hh. In the lateral line primordium the modified sugar chains on proteoglycans are important regulators of cell polarity, ligand distribution and Fgf signaling. At least five proteoglycans show distinct expression patterns in the primordium; however, their individual functions have not been studied. Here, we describe the function of glypican4 during zebrafish lateral line development. glypican4 is expressed in neuromasts, interneuromast cells and muscle cells underlying the lateral line. knypekfr6/glypican4 mutants show severe primordium migration defects and the primordium often U-turns and migrates back toward the head. Our analysis shows that Glypican4 regulates the feedback loop between Wnt/ß-catenin/Fgf signaling in the primordium redundantly with other Heparan Sulfate Proteoglycans. In addition, the primordium migration defect is caused non-cell autonomously by the loss of cxcl12a-expressing muscle precursors along the myoseptum via downregulation of Hh. Our results show that glypican4 has distinct functions in primordium cells and cells in the environment and that both of these functions are essential for collective cell migration.


Asunto(s)
Glipicanos/fisiología , Proteoglicanos de Heparán Sulfato/fisiología , Sistema de la Línea Lateral/embriología , Proteínas de Pez Cebra/fisiología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Movimiento Celular , Polaridad Celular , Ectodermo/citología , Ectodermo/fisiología , Ectodermo/trasplante , Retroalimentación Fisiológica , Gástrula/fisiología , Regulación del Desarrollo de la Expresión Génica , Glipicanos/genética , Proteínas Hedgehog/fisiología , Sistema de la Línea Lateral/citología , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Vía de Señalización Wnt/fisiología , Pez Cebra/embriología
8.
Wiley Interdiscip Rev Dev Biol ; 5(6): 689-710, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27576003

RESUMEN

The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Linfangiogénesis/fisiología , Enfermedades Linfáticas/patología , Vasos Linfáticos/embriología , Vasos Linfáticos/patología , Animales , Drenaje , Humanos
9.
Zebrafish ; 13(6): 537-540, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27057799

RESUMEN

Genetic manipulations are a vital instrument for the study of embryonic development where to understand how genes work, it is necessary to provoke a loss or gain of function of a particular gene in a spatial and temporal manner. In the zebrafish embryo, the Hsp70 promoter is the most commonly used tool to induce a transient global gene expression of a desired gene, in a temporal manner. However, Hsp70-driven global gene induction presents caveats when studying gene function in a tissue of interest as gene induction in the whole embryo can lead to cell-autonomous and non-cell-autonomous phenotypes. In the current article, we describe an innovative and cost effective protocol to activate Hsp70-dependent expression in a small subset of cells in the zebrafish embryo, by utilizing a localized infrared (IR) laser. Our IR laser set up can be incorporated to any microscope platform without the requirement for expensive equipment. Furthermore, our protocol allows for controlled localized induction of specific proteins under the control of the hsp70 promoter in small subsets of cells. We use the migrating zebrafish sensory lateral line primordium as a model, because of its relative simplicity and experimental accessibility; however, this technique can be applied to any tissue in the zebrafish embryo.


Asunto(s)
Desarrollo Embrionario/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica , Técnicas Genéticas , Respuesta al Choque Térmico/genética , Calor , Pez Cebra/fisiología , Animales , Desarrollo Embrionario/genética , Técnicas Genéticas/economía , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Rayos Infrarrojos/efectos adversos , Rayos Láser , Regiones Promotoras Genéticas , Pez Cebra/embriología , Pez Cebra/genética
10.
Cell Rep ; 10(3): 414-428, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600875

RESUMEN

Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/ß-catenin and fibroblast growth factor (Fgf) signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2) revealed that loss of heparan sulfate (HS) chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/ß-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG) function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/ß-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...