Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38785975

RESUMEN

The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Genoma Humano , Metagenómica/métodos , Metilación de ADN/genética , Genómica/métodos
2.
Genes (Basel) ; 14(8)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37628702

RESUMEN

Expanded carrier screening (ECS) means a comprehensive genetic analysis to evaluate an individual's carrier status. ECS is becoming more frequently used, thanks to the availability of techniques such as next generation sequencing (NGS) and array comparative genomic hybridization (aCGH), allowing for extensive genome-scale analyses. Here, we report the case of a couple who underwent ECS for a case of autism spectrum disorder in the male partner family. aCGH and whole-exome sequencing (WES) were performed in the couple. aCGH analysis identified in the female partner two deletions involving genes associated to behavioral and neurodevelopment disorders. No clinically relevant alterations were identified in the husband. Interestingly, WES analysis identified in the male partner a pathogenic variant in the LPL gene that is emerging as a novel candidate gene for autism. This case shows that ECS may be useful in clinical contexts, especially when both the partners are analyzed before conception, thus allowing the estimation of their risk to transmit an inherited condition. On the other side, there are several concerns related to possible incidental findings and difficult-to-interpret results. Once these limits are defined by the establishment of specific guidelines, ECS may have a greater diffusion.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Femenino , Masculino , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Hibridación Genómica Comparativa , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Fertilización , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569632

RESUMEN

Acute or intense exercise can result in metabolic imbalances, muscle injuries, or reveal hidden disorders. Laboratory medicine in sports is playing an increasingly crucial role in monitoring athletes' health conditions. In this study, we designed an integrated approach to explore the causes of a deep venous thrombosis event in an elite basketball player. Since the complete blood count revealed a marked platelet count (838 × 103 µL), and thrombophilia screening tests did not reveal any significant alteration, we evaluated the thrombin generation, which highlights a state of hypercoagulability. First-level haemostasis exams showed only a slight prolongation of the activated Partial Thromboplastin Time (aPTT). Thus, screening tests for von Willebrand Disease showed a reduction in vWF parameters. Therefore, we directed our hypothesis towards a diagnosis of acquired von Willebrand disease secondary to Essential Thrombocythemia (ET). To confirm this hypothesis and highlight the molecular mechanism underlying the observed phenotype, molecular tests were performed to evaluate the presence of the most common mutations associated with ET, revealing a 52-bp deletion in the coding region of CALR exon 9. This case report highlights the importance of an integrated approach to monitoring the athletes' health status to personalise training and treatments, thus avoiding the appearance of diseases and injuries that, if underestimated, can undermine the athlete's life.


Asunto(s)
Baloncesto , Trombocitemia Esencial , Trombofilia , Trombosis de la Vena , Enfermedades de von Willebrand , Humanos , Trombofilia/complicaciones , Trombosis de la Vena/genética , Atletas , Factor de von Willebrand/metabolismo
4.
Genes (Basel) ; 14(6)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372408

RESUMEN

Infertility incidence is rising worldwide, with male infertility accounting for about 50% of cases. To date, several factors have been associated with male infertility; in particular, it has been suggested that semen microbiota may play a role. Here, we report the NGS-based analyses of 20 semen samples collected from men with (Case) and without (Control) semen alterations. Genomic DNA was extracted from each collected sample, and a specific PCR was carried out to amplify the V4-V6 regions of the 16S rRNA. Sequence reactions were carried out on the MiSeq and analyzed by specific bioinformatic tools. We found a reduced richness and evenness in the Case versus the Control group. Moreover, specific genera, the Mannheimia, the Escherichia_Shigella, and the Varibaculum, were significantly increased in the Case compared to the Control group. Finally, we highlighted a correlation between the microbial profile and semen hyperviscosity. Even if further studies are required on larger groups of subjects to confirm these findings and explore mechanistic hypotheses, our results confirm the correlation between semen features and seminal microbiota. These data, in turn, may open the way to the possible use of semen microbiota as an attractive target for developing novel strategies for infertility management.


Asunto(s)
Infertilidad Masculina , Semen , Humanos , Masculino , Metagenómica , ARN Ribosómico 16S/genética , Infertilidad Masculina/genética , Análisis de Semen
5.
Genes (Basel) ; 13(9)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36140732

RESUMEN

Gut microbiota has emerged as an important key regulator of health and disease status. Indeed, gut microbial dysbiosis has been identified in an increasing number of diseases, including neurodegenerative disorders. Accordingly, microbial alterations have been reported also in Alzheimer's disease (AD), suggesting possible pathogenetic mechanisms contributing to the development of specific AD hallmarks and exacerbating metabolic alterations and neuroinflammation. The identification of these mechanisms is crucial to develop novel, targeted therapies and identify potential biomarkers for diagnostic purposes. Thus, the possibility to have AD in vivo models to study this microbial ecosystem represents a great opportunity for translational applications. Here, we characterized both gut microbiome and mycobiome of 3xTg-AD mice, one of the most widely used AD models, to identify specific microbial alterations with respect to the wild-type counterpart. Interestingly, we found a significant reduction of the Coprococcus and an increased abundance of Escherichia_Shigella and Barnesiella genera in the AD mice compatible with a pro-inflammatory status and the development of AD-related pathogenetic features. Moreover, the fungal Dipodascaceae family was significantly increased, thus suggesting a possible contribution to the metabolic alterations found in AD. Our data point out the strict connection between bacterial dysbiosis and AD and, even if further studies are required to clarify the underlining mechanisms, it clearly indicates the need for extensive metagenomic studies over the bacterial counterpart.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Micobioma , Enfermedad de Alzheimer/metabolismo , Animales , Biomarcadores , Disbiosis , Ecosistema , Ratones
6.
J Cell Physiol ; 237(10): 3803-3815, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35994714

RESUMEN

Genetic studies support the amyloid cascade as the leading hypothesis for the pathogenesis of Alzheimer's disease (AD). Although significant efforts have been made in untangling the amyloid and other pathological events in AD, ongoing interventions for AD have not been revealed efficacious for slowing down disease progression. Recent advances in the field of genetics have shed light on the etiology of AD, identifying numerous risk genes associated with late-onset AD, including genes related to intracellular endosomal trafficking. Some of the bases for the development of AD may be explained by the recently emerging AD genetic "hubs," which include the processing pathway of amyloid precursor protein and the endocytic pathway. The endosomal genetic hub may represent a common pathway through which many pathological effects can be mediated and novel, alternative biological targets could be identified for therapeutic interventions. The aim of this review is to focus on the genetic and biological aspects of the endosomal compartments related to AD progression. We report recent studies which describe how changes in endosomal genetics impact on functional events, such as the amyloidogenic and non-amyloidogenic processing, degradative pathways, and the importance of receptors related to endocytic trafficking, including the 37/67 kDa laminin-1 receptor ribosomal protein SA, and their implications for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Endosomas/metabolismo , Humanos , Proteínas Ribosómicas/metabolismo
7.
Nutrients ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745108

RESUMEN

Beer is the most consumed alcoholic beverage worldwide. It is rich in nutrients, and with its microbial component it could play a role in gut microbiota modulation. Conflicting data are currently available regarding the consequences of alcohol and alcohol-containing beverages on dementia and age-associated disorders including Alzheimer's disease (AD), a neurodegeneration characterized by protein aggregation, inflammatory processes and alterations of components of the gut-brain axis. The effects of an unfiltered and unpasteurized craft beer on AD molecular hallmarks, levels of gut hormones and composition of micro/mycobiota were dissected using 3xTg-AD mice. In addition, to better assess the role of yeasts, beer was enriched with the same Saccharomyces cerevisiae strain used for brewing. The treatment with the yeast-enriched beer ameliorated cognition and favored the reduction of Aß(1-42) and pro-inflammatory molecules, also contributing to an increase in the concentration of anti-inflammatory cytokines. A significant improvement in the richness and presence of beneficial taxa in the gut bacterial population of the 3xTg-AD animals was observed. In addition, the fungal order, Sordariomycetes, associated with gut inflammatory conditions, noticeably decreased with beer treatments. These data demonstrate, for the first time, the beneficial effects of a yeast-enriched beer on AD signs, suggesting gut microbiota modulation as a mechanism of action.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Fármacos Neuroprotectores , Enfermedad de Alzheimer/metabolismo , Animales , Cerveza/análisis , Ratones , Fármacos Neuroprotectores/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Medicina (Kaunas) ; 58(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454361

RESUMEN

Background and Objectives: The development and standardization of genome-wide technologies able to carry out high-resolution, genomic analyses in a cost- and time-affordable way is increasing our knowledge regarding the molecular bases of complex diseases like autism spectrum disorder (ASD). ASD is a group of heterogeneous diseases with multifactorial origins. Genetic factors seem to be involved, albeit they remain still largely unknown. Here, we report the case of a child with a clinical suspicion of ASD investigated by using such a genomic high-resolution approach. Materials and Methods: Both array comparative genomic hybridization (aCGH) and exome sequencing were carried out on the family trio. aCGH was performed using the 4 × 180 K SurePrint G3 Human CGH Microarray, while the Human All Exon V7 targeted SureSelect XT HS panel was used for exome sequencing. Results: aCGH identified a paternally inherited duplication of chromosome 7 involving the CNTNAP2 gene, while 5 potentially clinically-relevant variants were identified by exome sequencing. Conclusions: Within the identified genomic alterations, the CNTNAP2 gene duplication may be related to the patient's phenotype. Indeed, this gene has already been associated with brain development and cognitive functions, including language. The paternal origin of the alteration cannot exclude an incomplete penetrance. Moreover, other genomic factors may act as phenotype modifiers combined with CNTNAP2 gene duplication. Thus, the case reported herein strongly reinforces the need to use extensive genomic analyses to shed light on the bases of complex diseases.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Hibridación Genómica Comparativa , Exoma/genética , Duplicación de Gen , Pruebas Genéticas , Humanos
9.
Genes (Basel) ; 13(4)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35456488

RESUMEN

BRCA1/2 are tumor suppressor genes involved in DNA double-strand break repair. They are the most penetrant genes for hereditary breast and ovarian cancers, but pathogenic variants in these two genes can be identified only in a fraction of hereditary cases. Following the diffusion of BRCA molecular testing and the availability of specific therapeutic strategies for the management of pathogenic variant carriers, the demand for the analysis of additional predisposing genetic factors has increased. Indeed, there is accumulating evidence regarding the role of other genes, including CHEK2 and PALB2. Both of them are involved in the same molecular pathway as BRCA genes, with CHEK2 being responsible for cell cycle stopping to allow the repair of DNA double-strand breaks and PALB2 being able to interact with BRCA1 and activate BRCA2. Thus, their role as additional hereditary cancer predisposing factors is intriguing. Accordingly, guidelines for hereditary cancer risk assessment have been updated to include the criteria for additional genes testing. In this context, we validated a commercially available kit allowing for the simultaneous analysis of BRCA1, BRCA2, CHEK2 and PALB2. Forty-eight patients, already tested for BRCA mutational status, were re-analyzed in the present study. Results comparison showed that the tested method was able to correctly identify all the variants previously detected in the same patients. In particular, all single-nucleotide variants and small indels were correctly identified. Moreover, two copy number variants, included to assess the software's performance in detecting this kind of gene alteration, were also detected. Even if copy number variant estimation still requires confirmation by a molecular technique to avoid false positive results, it is able to reduce the number of patients requiring multiplex ligation probe amplification analysis, positively impacting the test's turnaround time. Finally, since the time and costs of the analysis are similar to those required just for BRCA genes, this strategy may be affordable for providing a more comprehensive test for hereditary cancer risk assessment.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Ováricas , Femenino , Genes BRCA2 , Humanos , Mutación , Neoplasias Ováricas/genética , Medición de Riesgo
10.
Medicina (Kaunas) ; 58(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35334631

RESUMEN

Genetic carrier screening has been successfully used over the last decades to identify individuals at risk of transmitting specific DNA variants to their newborns, thus having an affected child. Traditional testing has been offered based on familial and/or ethnic backgrounds. The development of high-throughput technologies, such as next-generations sequencing, able to allow the study of large genomic regions in a time and cost-affordable way, has moved carrier screening toward a more comprehensive and extensive approach, i.e., expanded carrier screening (ECS). ECS simultaneously analyses several disease-related genes and better estimates individuals' carrier status. Indeed, it is not influenced by ethnicity and is not limited to a subset of mutations that may arise from poor information in some populations. Moreover, if couples carry out ECS before conceiving a baby, it allows them to obtain a complete estimation of their genetic risk and the possibility to make an informed decision regarding their reproductive life. Despite these advantages, some weakness still exists regarding, for example, the number of genes and the kind of diseases to be analyzed and the interpretation and communication of the obtained results. Once these points are fixed, it is expectable that ECS will become an ever more frequent practice in clinical settings.


Asunto(s)
Asesoramiento Genético , Tamizaje Masivo , Niño , Etnicidad , Tamización de Portadores Genéticos/métodos , Humanos , Recién Nacido , Mutación
11.
Cells ; 11(3)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159276

RESUMEN

To fight neurodegenerative diseases, several therapeutic strategies have been proposed that, to date, are either ineffective or at the early preclinical stages. Intracellular protein aggregates represent the cause of about 70% of neurodegenerative disorders, such as Alzheimer's disease. Thus, autophagy, i.e., lysosomal degradation of macromolecules, could be employed in this context as a therapeutic strategy. Searching for a compound that stimulates this process led us to the identification of a 37/67kDa laminin receptor inhibitor, NSC48478. We have analysed the effects of this small molecule on the autophagic process in mouse neuronal cells and found that NSC48478 induces the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) into the LC3-phosphatidylethanolamine conjugate (LC3-II). Interestingly, upon NSC48478 treatment, the contribution of membranes to the autophagic process derived mainly from the non-canonical m-TOR-independent endocytic pathway, involving the Rab proteins that control endocytosis and vesicle recycling. Finally, qRT-PCR analysis suggests that, while the expression of key genes linked to canonical autophagy was unchanged, the main genes related to the positive regulation of endocytosis (pinocytosis and receptor mediated), along with genes regulating vesicle fusion and autolysosomal maturation, were upregulated under NSC48478 conditions. These results strongly suggest that 37/67 kDa inhibitor could be a useful tool for future studies in pathological conditions.


Asunto(s)
Autofagia , Laminina , Animales , Laminina/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Naftoles/farmacología , Receptores de Laminina
12.
Nutrients ; 13(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924725

RESUMEN

Non-alcoholic-fatty liver disease (NAFLD) is spreading worldwide. Specific drugs for NAFLD are not yet available, even if some plant extracts show beneficial properties. We evaluated the effects of a combination, composed by Berberis Aristata, Elaeis Guineensis and Coffea Canephora, on the development of obesity, hepatic steatosis, insulin-resistance and on the modulation of hepatic microRNAs (miRNA) levels and microbiota composition in a mouse model of liver damage. C57BL/6 mice were fed with standard diet (SD, n = 8), high fat diet (HFD, n = 8) or HFD plus plant extracts (HFD+E, n = 8) for 24 weeks. Liver expression of miR-122 and miR-34a was evaluated by quantitativePCR. Microbiome analysis was performed on cecal content by 16S rRNA sequencing. HFD+E-mice showed lower body weight (p < 0.01), amelioration of insulin-sensitivity (p = 0.021), total cholesterol (p = 0.014), low-density-lipoprotein-cholesterol (p < 0.001), alanine-aminotransferase (p = 0.038) and hepatic steatosis compared to HFD-mice. While a decrease of hepatic miR-122 and increase of miR-34a were observed in HFD-mice compared to SD-mice, both these miRNAs had similar levels to SD-mice in HFD+E-mice. Moreover, a different microbial composition was found between SD- and HFD-mice, with a partial rescue of dysbiosis in HFD+E-mice. This combination of plant extracts had a beneficial effect on HFD-induced NAFLD by the modulation of miR-122, miR-34a and gut microbiome.


Asunto(s)
Disbiosis/tratamiento farmacológico , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Arecaceae/química , Berberina/administración & dosificación , Berberis/química , Coffea/química , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Disbiosis/inmunología , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Humanos , Resistencia a la Insulina/inmunología , Hígado/patología , Masculino , Ratones , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Extractos Vegetales/química , Tocotrienoles/administración & dosificación
13.
High Throughput ; 9(2)2020 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-32375241

RESUMEN

During the last decade, the availability of next-generation sequencing-based approaches has revealed the presence of microbial communities in almost all the human body, including the reproductive tract. As for other body sites, this resident microbiota has been involved in the maintenance of a healthy status. As a consequence, alterations due to internal or external factors may lead to microbial dysbiosis and to the development of pathologies. Female reproductive microbiota has also been suggested to affect infertility, and it may play a key role in the success of assisted reproductive technologies, such as embryo implantation and pregnancy care. While the vaginal microbiota is well described, the uterine microbiota is underexplored. This could be due to technical issues, as the uterus is a low biomass environment. Here, we review the state of the art regarding the role of the female reproductive system microbiota in women's health and human reproduction, highlighting its contribution to infertility.

14.
High Throughput ; 9(2)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294988

RESUMEN

The increasing interest in metagenomics is enhancing our knowledge regarding the composition and role of the microbiota in human physiology and pathology. Indeed, microbes have been reported to play a role in several diseases, including infertility. In particular, the male seminal microbiota has been suggested as an important factor able to influence couple's health and pregnancy outcomes, as well as offspring health. Nevertheless, few studies have been carried out to date to deeper investigate semen microbiome origins and functions, and its correlations with the partner's reproductive tract microbiome. Here, we report the state of the art regarding the male reproductive system microbiome and its alterations in infertility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...