Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Ophthalmol Sci ; 4(5): 100522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881611

RESUMEN

Objective: The objective of this study was to develop a rapid and accurate clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based molecular diagnostic assay (Rapid Identification of Mycoses using CRISPR, RID-MyC assay) to detect fungal nucleic acids and to compare it with existing conventional mycologic methods for the diagnosis of fungal keratitis (FK). Design: This study was structured as a development and validation study focusing on the creation and assessment of the RID-MyC assay as a novel diagnostic modality for FK. Subjects: Participants comprised 142 individuals presenting with suspected microbial keratitis at 3 tertiary care institutions in South India. Methods: The RID-MyC assay utilized recombinase polymerase amplification targeting the 18S ribosomal RNA gene for isothermal amplification, followed by a CRISPR/Cas12a reaction. This was benchmarked against microscopy, culture, and polymerase chain reaction for the diagnosis of FK. Main Outcome Measures: The primary outcome measures focused on the analytical sensitivity and specificity of the RID-MyC assay in detecting fungal nucleic acids. Secondary outcomes measured the assay's diagnostic sensitivity and specificity for FK, including its concordance with conventional diagnostic methods. Results: The RID-MyC assay exhibited a detection limit ranging from 13.3 to 16.6 genomic copies across 4 common fungal species. In patients with microbial keratitis, the RID-MyC assay showed substantial agreement with microscopy (kappa = 0.714) and fair agreement with culture (kappa = 0.399). The assay demonstrated a sensitivity of 93.27% (95% confidence interval [CI], 86.62%-97.25%) and a specificity of 89.47% (95% CI, 66.86%-98.70%) for FK diagnosis, with a median diagnostic time of 50 minutes (range, 35-124 minutes). Conclusions: The RID-MyC assay, utilizing CRISPR-Cas12a technology, offers high diagnostic accuracy for FK. Its potential for point-of-care use could expedite and enhance the precision of fungal diagnostics, presenting a promising solution to current diagnostic challenges. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
J Med Imaging (Bellingham) ; 11(3): 035001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756438

RESUMEN

Purpose: The accurate detection and tracking of devices, such as guiding catheters in live X-ray image acquisitions, are essential prerequisites for endovascular cardiac interventions. This information is leveraged for procedural guidance, e.g., directing stent placements. To ensure procedural safety and efficacy, there is a need for high robustness/no failures during tracking. To achieve this, one needs to efficiently tackle challenges, such as device obscuration by the contrast agent or other external devices or wires and changes in the field-of-view or acquisition angle, as well as the continuous movement due to cardiac and respiratory motion. Approach: To overcome the aforementioned challenges, we propose an approach to learn spatio-temporal features from a very large data cohort of over 16 million interventional X-ray frames using self-supervision for image sequence data. Our approach is based on a masked image modeling technique that leverages frame interpolation-based reconstruction to learn fine inter-frame temporal correspondences. The features encoded in the resulting model are fine-tuned downstream in a light-weight model. Results: Our approach achieves state-of-the-art performance, in particular for robustness, compared to ultra optimized reference solutions (that use multi-stage feature fusion or multi-task and flow regularization). The experiments show that our method achieves a 66.31% reduction in the maximum tracking error against the reference solutions (23.20% when flow regularization is used), achieving a success score of 97.95% at a 3× faster inference speed of 42 frames-per-second (on GPU). In addition, we achieve a 20% reduction in the standard deviation of errors, which indicates a much more stable tracking performance. Conclusions: The proposed data-driven approach achieves superior performance, particularly in robustness and speed compared with the frequently used multi-modular approaches for device tracking. The results encourage the use of our approach in various other tasks within interventional image analytics that require effective understanding of spatio-temporal semantics.

4.
Nat Commun ; 15(1): 3268, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627390

RESUMEN

Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.


Asunto(s)
Bulbo Olfatorio , Neuronas Receptoras Olfatorias , Ratones , Animales , Bulbo Olfatorio/fisiología , Retroalimentación , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Odorantes
5.
bioRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370735

RESUMEN

Associative learning depends on contingency, the degree to which a stimulus predicts an outcome. Despite its importance, the neural mechanisms linking contingency to behavior remain elusive. Here we examined the dopamine activity in the ventral striatum - a signal implicated in associative learning - in a Pavlovian contingency degradation task in mice. We show that both anticipatory licking and dopamine responses to a conditioned stimulus decreased when additional rewards were delivered uncued, but remained unchanged if additional rewards were cued. These results conflict with contingency-based accounts using a traditional definition of contingency or a novel causal learning model (ANCCR), but can be explained by temporal difference (TD) learning models equipped with an appropriate inter-trial-interval (ITI) state representation. Recurrent neural networks trained within a TD framework develop state representations like our best 'handcrafted' model. Our findings suggest that the TD error can be a measure that describes both contingency and dopaminergic activity.

6.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38260512

RESUMEN

The widespread adoption of deep learning to build models that capture the dynamics of neural populations is typically based on "black-box" approaches that lack an interpretable link between neural activity and function. Here, we propose to apply algorithm unrolling, a method for interpretable deep learning, to design the architecture of sparse deconvolutional neural networks and obtain a direct interpretation of network weights in relation to stimulus-driven single-neuron activity through a generative model. We characterize our method, referred to as deconvolutional unrolled neural learning (DUNL), and show its versatility by applying it to deconvolve single-trial local signals across multiple brain areas and recording modalities. To exemplify use cases of our decomposition method, we uncover multiplexed salience and reward prediction error signals from midbrain dopamine neurons in an unbiased manner, perform simultaneous event detection and characterization in somatosensory thalamus recordings, and characterize the responses of neurons in the piriform cortex. Our work leverages the advances in interpretable deep learning to gain a mechanistic understanding of neural dynamics.

7.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106232

RESUMEN

Dogs and laboratory mice are commonly trained to perform complex tasks by guiding them through a curriculum of simpler tasks ('shaping'). What are the principles behind effective shaping strategies? Here, we propose a machine learning framework for shaping animal behavior, where an autonomous teacher agent decides its student's task based on the student's transcript of successes and failures on previously assigned tasks. Using autonomous teachers that plan a curriculum in a common sequence learning task, we show that near-optimal shaping algorithms adaptively alternate between simpler and harder tasks to carefully balance reinforcement and extinction. Based on this intuition, we derive an adaptive shaping heuristic with minimal parameters, which we show is near-optimal on the sequence learning task and robustly trains deep reinforcement learning agents on navigation tasks that involve sparse, delayed rewards. Extensions to continuous curricula are explored. Our work provides a starting point towards a general computational framework for shaping animal behavior.

8.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961548

RESUMEN

Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.

9.
Proc Natl Acad Sci U S A ; 120(31): e2303928120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494398

RESUMEN

Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.


Asunto(s)
Nariz , Olfato , Humanos , Nariz Electrónica , Aprendizaje Automático , Gases
10.
Phys Eng Sci Med ; 46(2): 925-944, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37160538

RESUMEN

Examining P-wave morphological changes in Electrocardiogram (ECG) is essential for characterizing atrial arrhythmias. However, standard 12-lead ECGsuffer from diagnostic redundancy due to low signal-to-noise ratio of P-waves. To address this issue, various optimal leads have been proposed for improved atrial activity recording, but the right selection among these leads is crucial for enhancing diagnostic efficacy. This study proposes an automated lead selection technique using the CatBoost machine learning (ML) model to improve the detection of P-wave changes among optimal bipolar leads under different heart rates. ECGs were obtained from healthy participants with a mean age of 25 ± 3.81 years (34% women), including 114 in sinus rhythm (SR) and 38 in sinus tachycardia (ST). The recordings were made using a newly designed atrial lead system (ALS), standard limb lead (SLL), modified limb lead (MLL), modified Lewis lead (LLM) and P-lead. P-wave features and Atrioventricular (AV) ratio were extracted for statistical analysis and ML classification. The optimum ML model was chosen to identify the best-performing optimal lead, which was selected based on the SLL metrics among different ML classifiers. CatBoost was found to outperform the other ML models in SLL-II with the highest accuracy and sensitivity of 0.82 and 0.90, respectively. The CatBoost model, amid other optimal leads, gave the best results for AL-I and AL-II (0.86 and 0.83 in accuracy and 0.91 and 0.93 in sensitivity). The developed CatBoost model selected AL-I and AL-II as the top two best-performing optimal leads for the enhanced acquisition of P-wave changes, which may be useful for diagnosing atrial arrhythmias.


Asunto(s)
Fibrilación Atrial , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Fibrilación Atrial/diagnóstico , Taquicardia , Frecuencia Cardíaca , Atrios Cardíacos , Electrocardiografía/métodos
11.
PLoS Biol ; 21(4): e3002086, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37098044

RESUMEN

Rodents can learn from exposure to rewarding odors to make better and quicker decisions. The piriform cortex is thought to be important for learning complex odor associations; however, it is not understood exactly how it learns to remember discriminations between many, sometimes overlapping, odor mixtures. We investigated how odor mixtures are represented in the posterior piriform cortex (pPC) of mice while they learn to discriminate a unique target odor mixture against hundreds of nontarget mixtures. We find that a significant proportion of pPC neurons discriminate between the target and all other nontarget odor mixtures. Neurons that prefer the target odor mixture tend to respond with brief increases in firing rate at odor onset compared to other neurons, which exhibit sustained and/or decreased firing. We allowed mice to continue training after they had reached high levels of performance and find that pPC neurons become more selective for target odor mixtures as well as for randomly chosen repeated nontarget odor mixtures that mice did not have to discriminate from other nontargets. These single unit changes during overtraining are accompanied by better categorization decoding at the population level, even though behavioral metrics of mice such as reward rate and latency to respond do not change. However, when difficult ambiguous trial types are introduced, the robustness of the target selectivity is correlated with better performance on the difficult trials. Taken together, these data reveal pPC as a dynamic and robust system that can optimize for both current and possible future task demands at once.


Asunto(s)
Odorantes , Corteza Piriforme , Ratones , Animales , Corteza Piriforme/fisiología , Neuronas/fisiología , Olfato/fisiología , Vías Olfatorias/fisiología
12.
Mater Struct ; 56(3): 51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909254

RESUMEN

Digital fabrication methods with concrete have been rapidly developing, with many problems related to component production and material control being solved in recent years. These processes produce inherently layered cementitious components that are anisotropic, and in many cases, produces a weak interface between layers, which are generally referred to as cold joints. While material strength at these interfaces has been well studied in recent years, durability has received less attention, even though cold joints can function as channels for aggressive agents, such as chlorides. This work presents a method using micro-X-ray fluorescence (µXRF) to image chloride ingress into layer interfaces of 3D printed fine-grained concrete specimens produced with varying layer deposition time intervals, and also compares it to neutron imaging of moisture uptake. The results show that cold joints formed after a 1 day time interval are highly susceptible to chloride ingress, and that curing conditions play a major role in how quickly interfacial transport can take place. The µXRF method is also shown to be useful for study of transport of chlorides in cold joints, due to its spatial resolution and direct analysis of an aggressive species of interest.

13.
Neuron ; 110(24): 4040-4042, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36549269
14.
Elife ; 112022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214457

RESUMEN

The solution of complex problems by the collective action of simple agents in both biologically evolved and synthetically engineered systems involves cooperative action. Understanding the resulting emergent solutions requires integrating across the organismal behavior of many individuals. Here, we investigate an ecologically relevant collective task in black carpenter ants Camponotus pennsylvanicus: excavation of a soft, erodible confining corral. These ants show a transition from individual exploratory excavation at random locations to spatially localized collective exploitative excavation and escape from the corral. Agent-based simulations and a minimal continuum theory that coarse-grains over individual actions and considers their integrated influence on the environment leads to the emergence of an effective phase space of behaviors, characterized in terms of excavation strength and cooperation intensity. To test the theory over the range of both observed and predicted behaviors, we use custom-built robots (RAnts) that respond to stimuli to characterize the phase space of emergence (and failure) of cooperative excavation. Tuning the amount of cooperation between RAnts, allows us to vary the efficiency of excavation and synthetically generate the entire range of macroscopic phases predicted by our theory. Overall, our approach shows how the cooperative completion of tasks can arise from simple rules that involve the interaction of agents with a dynamically changing environment that serves as both an enabler and a modulator of behavior.


Asunto(s)
Hormigas , Robótica , Animales , Humanos
15.
Elife ; 112022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708179

RESUMEN

Positive and negative associations acquired through olfactory experience are thought to be especially strong and long-lasting. The conserved direct olfactory sensory input to the ventral striatal olfactory tubercle (OT) and its convergence with dense dopaminergic input to the OT could underlie this privileged form of associative memory, but how this process occurs is not well understood. We imaged the activity of the two canonical types of striatal neurons, expressing D1- or D2-type dopamine receptors, in the OT at cellular resolution while mice learned odor-outcome associations ranging from aversive to rewarding. D1 and D2 neurons both responded to rewarding and aversive odors. D1 neurons in the OT robustly and bidirectionally represented odor valence, responding similarly to odors predicting similar outcomes regardless of odor identity. This valence representation persisted even in the absence of a licking response to the odors and in the absence of the outcomes, indicating a true transformation of odor sensory information by D1 OT neurons. In contrast, D2 neuronal representation of the odor-outcome associations was weaker, contingent on a licking response by the mouse, and D2 neurons were more selective for odor identity than valence. Stimulus valence coding in the OT was modality-sensitive, with separate sets of D1 neurons responding to odors and sounds predicting the same outcomes, suggesting that integration of multimodal valence information happens downstream of the OT. Our results point to distinct representation of identity and valence of odor stimuli by D1 and D2 neurons in the OT.


Asunto(s)
Señales (Psicología) , Estriado Ventral , Animales , Ratones , Neuronas/fisiología , Odorantes , Tubérculo Olfatorio/fisiología , Receptores de Dopamina D2/metabolismo , Olfato/fisiología , Estriado Ventral/metabolismo
17.
Nat Methods ; 19(4): 496-504, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35414125

RESUMEN

Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source pose estimation toolbox, and provide high-performance animal assembly and tracking-features required for multi-animal scenarios. Furthermore, we integrate the ability to predict an animal's identity to assist tracking (in case of occlusions). We illustrate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future algorithm development.


Asunto(s)
Algoritmos , Animales
18.
19.
Adv Neural Inf Process Syst ; 35: 22018-22034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37476623

RESUMEN

For animals to navigate an uncertain world, their brains need to estimate uncertainty at the timescales of sensations and actions. Sampling-based algorithms afford a theoretically-grounded framework for probabilistic inference in neural circuits, but it remains unknown how one can implement fast sampling algorithms in biologically-plausible spiking networks. Here, we propose to leverage the population geometry, controlled by the neural code and the neural dynamics, to implement fast samplers in spiking neural networks. We first show that two classes of spiking samplers-efficient balanced spiking networks that simulate Langevin sampling, and networks with probabilistic spike rules that implement Metropolis-Hastings sampling-can be unified within a common framework. We then show that careful choice of population geometry, corresponding to the natural space of parameters, enables rapid inference of parameters drawn from strongly-correlated high-dimensional distributions in both networks. Our results suggest design principles for algorithms for sampling-based probabilistic inference in spiking neural networks, yielding potential inspiration for neuromorphic computing and testable predictions for neurobiology.

20.
J Cell Physiol ; 237(1): 949-964, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491578

RESUMEN

Signaling by neurotrophins such as the brain-derived neurotrophic factor (BDNF) is known to modulate development of interneurons, but the circuit effects of this modulation remain unclear. Here, we examined the impact of deleting TrkB, a BDNF receptor, in parvalbumin-expressing (PV) interneurons on the balance of excitation and inhibition (E-I) in cortical circuits. In the mouse olfactory cortex, TrkB deletion impairs multiple aspects of PV neuronal function including synaptic excitation, intrinsic excitability, and the innervation pattern of principal neurons. Impaired PV cell function resulted in aberrant spiking patterns in principal neurons in response to stimulation of sensory inputs. Surprisingly, dampened PV neuronal function leads to a paradoxical decrease in overall excitability in cortical circuits. Our study demonstrates that, by modulating PV circuit plasticity and development, TrkB plays a critical role in shaping the evoked pattern of activity in a cortical network.


Asunto(s)
Parvalbúminas , Receptor trkB , Animales , Interneuronas/fisiología , Ratones , Neuronas , Parvalbúminas/genética , Receptor trkB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA