Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epidemics ; 47: 100775, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38838462

RESUMEN

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38774820

RESUMEN

We present MacKenzie, a HPC-driven multi-cluster workflow system that was used repeatedly to configure and execute fine-grained US national-scale epidemic simulation models during the COVID-19 pandemic. Mackenzie supported federal and Virginia policymakers, in real-time, for a large number of "what-if" scenarios during the COVID-19 pandemic, and continues to be used to answer related questions as COVID-19 transitions to the endemic stage of the disease. MacKenzie is a novel HPC meta-scheduler that can execute US-scale simulation models and associated workflows that typically present significant big data challenges. The meta-scheduler optimizes the total execution time of simulations in the workflow, and helps improve overall human productivity. As an exemplar of the kind of studies that can be conducted using Mackenzie, we present a modeling study to understand the impact of vaccine-acceptance in controlling the spread of COVID-19 in the US. We use a 288 million node synthetic social contact network (digital twin) spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12 billion daily interactions. The highly-resolved agent-based model used for the epidemic simulations uses realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Computational experiments show that, for the simulation workload discussed above, MacKenzie is able to scale up well to 10K CPU cores. Our modeling results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K across the US. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. We also find that if vaccine acceptance could be increased by 10% in all states, averted infections could be increased from 4.5M to 4.7M (a 4.4% improvement) and total averted deaths could be increased from 28.2K to 29.9K (a 6% improvement) nationwide.

3.
ArXiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562450

RESUMEN

The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology (WBE) for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding WBE for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.

4.
PNAS Nexus ; 3(3): pgae080, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505694

RESUMEN

The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings.

5.
Epidemics ; 47: 100761, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38555667

RESUMEN

Scenario-based modeling frameworks have been widely used to support policy-making at state and federal levels in the United States during the COVID-19 response. While custom-built models can be used to support one-off studies, sustained updates to projections under changing pandemic conditions requires a robust, integrated, and adaptive framework. In this paper, we describe one such framework, UVA-adaptive, that was built to support the CDC-aligned Scenario Modeling Hub (SMH) across multiple rounds, as well as weekly/biweekly projections to Virginia Department of Health (VDH) and US Department of Defense during the COVID-19 response. Building upon an existing metapopulation framework, PatchSim, UVA-adaptive uses a calibration mechanism relying on adjustable effective transmissibility as a basis for scenario definition while also incorporating real-time datasets on case incidence, seroprevalence, variant characteristics, and vaccine uptake. Through the pandemic, our framework evolved by incorporating available data sources and was extended to capture complexities of multiple strains and heterogeneous immunity of the population. Here we present the version of the model that was used for the recent projections for SMH and VDH, describe the calibration and projection framework, and demonstrate that the calibrated transmissibility correlates with the evolution of the pathogen as well as associated societal dynamics.

6.
Proc Natl Acad Sci U S A ; 120(48): e2305227120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983514

RESUMEN

Disease surveillance systems provide early warnings of disease outbreaks before they become public health emergencies. However, pandemics containment would be challenging due to the complex immunity landscape created by multiple variants. Genomic surveillance is critical for detecting novel variants with diverse characteristics and importation/emergence times. Yet, a systematic study incorporating genomic monitoring, situation assessment, and intervention strategies is lacking in the literature. We formulate an integrated computational modeling framework to study a realistic course of action based on sequencing, analysis, and response. We study the effects of the second variant's importation time, its infectiousness advantage and, its cross-infection on the novel variant's detection time, and the resulting intervention scenarios to contain epidemics driven by two-variants dynamics. Our results illustrate the limitation in the intervention's effectiveness due to the variants' competing dynamics and provide the following insights: i) There is a set of importation times that yields the worst detection time for the second variant, which depends on the first variant's basic reproductive number; ii) When the second variant is imported relatively early with respect to the first variant, the cross-infection level does not impact the detection time of the second variant. We found that depending on the target metric, the best outcomes are attained under different interventions' regimes. Our results emphasize the importance of sustained enforcement of Non-Pharmaceutical Interventions on preventing epidemic resurgence due to importation/emergence of novel variants. We also discuss how our methods can be used to study when a novel variant emerges within a population.


Asunto(s)
COVID-19 , Pandemias , Humanos , Pandemias/prevención & control , Salud Pública , Brotes de Enfermedades/prevención & control , Genómica
8.
medRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873156

RESUMEN

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, value of information, situational awareness, horizon scanning, and forecasting) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.

9.
Proc Natl Acad Sci U S A ; 120(28): e2300590120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399393

RESUMEN

When an influenza pandemic emerges, temporary school closures and antiviral treatment may slow virus spread, reduce the overall disease burden, and provide time for vaccine development, distribution, and administration while keeping a larger portion of the general population infection free. The impact of such measures will depend on the transmissibility and severity of the virus and the timing and extent of their implementation. To provide robust assessments of layered pandemic intervention strategies, the Centers for Disease Control and Prevention (CDC) funded a network of academic groups to build a framework for the development and comparison of multiple pandemic influenza models. Research teams from Columbia University, Imperial College London/Princeton University, Northeastern University, the University of Texas at Austin/Yale University, and the University of Virginia independently modeled three prescribed sets of pandemic influenza scenarios developed collaboratively by the CDC and network members. Results provided by the groups were aggregated into a mean-based ensemble. The ensemble and most component models agreed on the ranking of the most and least effective intervention strategies by impact but not on the magnitude of those impacts. In the scenarios evaluated, vaccination alone, due to the time needed for development, approval, and deployment, would not be expected to substantially reduce the numbers of illnesses, hospitalizations, and deaths that would occur. Only strategies that included early implementation of school closure were found to substantially mitigate early spread and allow time for vaccines to be developed and administered, especially under a highly transmissible pandemic scenario.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Preparaciones Farmacéuticas , Pandemias/prevención & control , Vacunas contra la Influenza/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico
10.
Int J High Perform Comput Appl ; 37(1): 4-27, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38603425

RESUMEN

This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; (ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; (iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; (iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.

11.
Elife ; 112022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35726851

RESUMEN

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2/genética , Estados Unidos/epidemiología , Vacunación
12.
Sci Rep ; 11(1): 20451, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650141

RESUMEN

This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are not the labor-intensive sectors such as the Agriculture sector and the Construction sector, but the ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.


Asunto(s)
COVID-19/epidemiología , Agricultura/economía , COVID-19/economía , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Industria de la Construcción/economía , Empleo , Humanos , Industrias/economía , Modelos Económicos , SARS-CoV-2/aislamiento & purificación , Teletrabajo , Estados Unidos/epidemiología
13.
PLoS Med ; 18(10): e1003793, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665805

RESUMEN

BACKGROUND: The importance of infectious disease epidemic forecasting and prediction research is underscored by decades of communicable disease outbreaks, including COVID-19. Unlike other fields of medical research, such as clinical trials and systematic reviews, no reporting guidelines exist for reporting epidemic forecasting and prediction research despite their utility. We therefore developed the EPIFORGE checklist, a guideline for standardized reporting of epidemic forecasting research. METHODS AND FINDINGS: We developed this checklist using a best-practice process for development of reporting guidelines, involving a Delphi process and broad consultation with an international panel of infectious disease modelers and model end users. The objectives of these guidelines are to improve the consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. The guidelines are not designed to advise scientists on how to perform epidemic forecasting and prediction research, but rather to serve as a standard for reporting critical methodological details of such studies. CONCLUSIONS: These guidelines have been submitted to the EQUATOR network, in addition to hosting by other dedicated webpages to facilitate feedback and journal endorsement.


Asunto(s)
Investigación Biomédica/normas , COVID-19/epidemiología , Lista de Verificación/normas , Epidemias , Guías como Asunto/normas , Proyectos de Investigación , Investigación Biomédica/métodos , Lista de Verificación/métodos , Enfermedades Transmisibles/epidemiología , Epidemias/estadística & datos numéricos , Predicción/métodos , Humanos , Reproducibilidad de los Resultados
14.
medRxiv ; 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34494030

RESUMEN

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

15.
medRxiv ; 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34127979

RESUMEN

High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.

16.
MMWR Morb Mortal Wkly Rep ; 70(19): 719-724, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988185

RESUMEN

After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/epidemiología , COVID-19/terapia , Hospitalización/estadística & datos numéricos , Modelos Estadísticos , Política Pública , Vacunación/estadística & datos numéricos , COVID-19/mortalidad , COVID-19/prevención & control , Predicción , Humanos , Máscaras , Distanciamiento Físico , Estados Unidos/epidemiología
17.
medRxiv ; 2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33758893

RESUMEN

Timely, high-resolution forecasts of infectious disease incidence are useful for policy makers in deciding intervention measures and estimating healthcare resource burden. In this paper, we consider the task of forecasting COVID-19 confirmed cases at the county level for the United States. Although multiple methods have been explored for this task, their performance has varied across space and time due to noisy data and the inherent dynamic nature of the pandemic. We present a forecasting pipeline which incorporates probabilistic forecasts from multiple statistical, machine learning and mechanistic methods through a Bayesian ensembling scheme, and has been operational for nearly 6 months serving local, state and federal policymakers in the United States. While showing that the Bayesian ensemble is at least as good as the individual methods, we also show that each individual method contributes significantly for different spatial regions and time points. We compare our model's performance with other similar models being integrated into CDC-initiated COVID-19 Forecast Hub, and show better performance at longer forecast horizons. Finally, we also describe how such forecasts are used to increase lead time for training mechanistic scenario projections. Our work demonstrates that such a real-time high resolution forecasting pipeline can be developed by integrating multiple methods within a performance-based ensemble to support pandemic response. ACM REFERENCE FORMAT: Aniruddha Adiga, Lijing Wang, Benjamin Hurt, Akhil Peddireddy, Przemys-law Porebski,, Srinivasan Venkatramanan, Bryan Lewis, Madhav Marathe. 2021. All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting. In Proceedings of ACM Conference (Conference'17) . ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn.

18.
medRxiv ; 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33655263

RESUMEN

The COVID-19 global outbreak represents the most significant epidemic event since the 1918 influenza pandemic. Simulations have played a crucial role in supporting COVID-19 planning and response efforts. Developing scalable workflows to provide policymakers quick responses to important questions pertaining to logistics, resource allocation, epidemic forecasts and intervention analysis remains a challenging computational problem. In this work, we present scalable high performance computing-enabled workflows for COVID-19 pandemic planning and response. The scalability of our methodology allows us to run fine-grained simulations daily, and to generate county-level forecasts and other counter-factual analysis for each of the 50 states (and DC), 3140 counties across the USA. Our workflows use a hybrid cloud/cluster system utilizing a combination of local and remote cluster computing facilities, and using over 20,000 CPU cores running for 6-9 hours every day to meet this objective. Our state (Virginia), state hospital network, our university, the DOD and the CDC use our models to guide their COVID-19 planning and response efforts. We began executing these pipelines March 25, 2020, and have delivered and briefed weekly updates to these stakeholders for over 30 weeks without interruption.

19.
Nat Commun ; 12(1): 726, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563980

RESUMEN

Human mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike. In this work, we focus on a machine-learned anonymized mobility map (hereon referred to as AMM) aggregated over hundreds of millions of smartphones and evaluate its utility in forecasting epidemics. We factor AMM into a metapopulation model to retrospectively forecast influenza in the USA and Australia. We show that the AMM model performs on-par with those based on commuter surveys, which are sparsely available and expensive. We also compare it with gravity and radiation based models of mobility, and find that the radiation model's performance is quite similar to AMM and commuter flows. Additionally, we demonstrate our model's ability to predict disease spread even across state boundaries. Our work contributes towards developing timely infectious disease forecasting at a global scale using human mobility datasets expanding their applications in the area of infectious disease epidemiology.


Asunto(s)
Predicción/métodos , Gripe Humana/epidemiología , Aprendizaje Automático , Australia/epidemiología , Humanos , Gripe Humana/prevención & control , Gripe Humana/transmisión , Modelos Teóricos , Ciudad de Nueva York/epidemiología , Dinámica Poblacional , Reproducibilidad de los Resultados , Teléfono Inteligente
20.
medRxiv ; 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33564778

RESUMEN

We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Even optimistic estimates suggest that most countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and the emergence of new viral strains urge us to find quick and effective ways to allocate the vaccines and contain the pandemic. While current approaches use combinations of age-based and occupation-based prioritizations, our strategy marks a departure from such largely aggregate vaccine allocation strategies. We propose a novel approach motivated by recent advances in (i) science of real-world networks that point to efficacy of certain vaccination strategies and (ii) digital technologies that improve our ability to estimate some of these structural properties. Using a realistic representation of a social contact network for the Commonwealth of Virginia, combined with accurate surveillance data on spatiotemporal cases and currently accepted models of within- and between-host disease dynamics, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic. We show that allocation of vaccines based on individuals' degree (number of social contacts) and total social proximity time is significantly more effective than the currently used age-based allocation strategy in terms of number of infections, hospitalizations and deaths. Our results suggest that in just two months, by March 31, 2021, compared to age-based allocation, the proposed degree-based strategy can result in reducing an additional 56-110k infections, 3.2- 5.4k hospitalizations, and 700-900 deaths just in the Commonwealth of Virginia. Extrapolating these results for the entire US, this strategy can lead to 3-6 million fewer infections, 181-306k fewer hospitalizations, and 51-62k fewer deaths compared to age-based allocation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly; (ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...