Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(10): 1495-1505, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723298

RESUMEN

In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance. How then can the biogenesis of Y-linked piRNAs be initiated? Here, using Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA locus as a model, we show that Su(Ste) piRNAs are made in the early male germline via 5'-to-3' phased piRNA biogenesis initiated by maternally deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) piRNAs from XXY mothers obviates the need for phased piRNA biogenesis in sons. Together, our study uncovers a developmentally programmed, intergenerational mechanism that allows fly mothers to protect their sons using a Y-linked piRNA locus.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ARN de Interacción con Piwi , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Argonautas/genética
2.
J Cell Sci ; 134(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34164657

RESUMEN

Tissue-specific stem cells maintain tissue homeostasis by providing a continuous supply of differentiated cells throughout the life of organisms. Differentiated/differentiating cells can revert back to a stem cell identity via dedifferentiation to help maintain the stem cell pool beyond the lifetime of individual stem cells. Although dedifferentiation is important for maintaining the stem cell population, it is speculated that it underlies tumorigenesis. Therefore, this process must be tightly controlled. Here, we show that a translational regulator, me31B, plays a critical role in preventing excess dedifferentiation in the Drosophila male germline: in the absence of me31B, spermatogonia dedifferentiate into germline stem cells (GSCs) at a dramatically elevated frequency. Our results show that the excess dedifferentiation is likely due to misregulation of nos, a key regulator of germ cell identity and GSC maintenance. Taken together, our data reveal negative regulation of dedifferentiation to balance stem cell maintenance with differentiation.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Drosophila , Drosophila , Células Germinativas , Células Madre , Animales , Diferenciación Celular , ARN Helicasas DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Homeostasis , Masculino , Espermatogonias
3.
PLoS Genet ; 16(3): e1008648, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32168327

RESUMEN

The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Silenciador del Gen , Células Germinativas , Cinesinas/genética , Masculino , Ovario/metabolismo , ARN Interferente Pequeño/metabolismo
4.
J Cell Biol ; 217(11): 3785-3795, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30232100

RESUMEN

The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.


Asunto(s)
División Celular Asimétrica/fisiología , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Humanos , Células Madre/citología
5.
Elife ; 52016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27885983

RESUMEN

Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in Drosophila male germline stem cells (GSCs). Depletion of klp10A results in abnormal elongation of the mother centrosomes in GSCs, suggesting the existence of a stem cell-specific centrosome regulation program. Concomitant with mother centrosome elongation, GSCs form asymmetric spindle, wherein the elongated mother centrosome organizes considerably larger half spindle than the other. This leads to asymmetric cell size, yielding a smaller differentiating daughter cell. We propose that klp10A functions to counteract undesirable asymmetries that may result as a by-product of achieving asymmetries essential for successful stem cell divisions.


Asunto(s)
División Celular , Centrosoma/enzimología , Proteínas de Drosophila/metabolismo , Células Germinativas/fisiología , Cinesinas/metabolismo , Células Madre/fisiología , Animales , Drosophila , Masculino
6.
Elife ; 42015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25793442

RESUMEN

Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD.


Asunto(s)
División Celular Asimétrica , Polaridad Celular , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Células Germinativas/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre/citología , Animales , Cadherinas/metabolismo , Drosophila melanogaster/metabolismo , Fase G2 , Glucógeno Sintasa Quinasa 3/metabolismo , Masculino , Fosforilación , Huso Acromático/metabolismo , Fracciones Subcelulares/metabolismo
7.
Development ; 142(1): 62-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25480919

RESUMEN

Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during development. Accordingly, the mechanisms by which asymmetric cell division is achieved have been extensively studied, although the check points that are in place to protect against potential perturbation of the process are poorly understood. Drosophila melanogaster male germline stem cells (GSCs) possess a checkpoint, termed the centrosome orientation checkpoint (COC), that monitors correct centrosome orientation with respect to the component cells of the niche to ensure asymmetric stem cell division. To our knowledge, the COC is the only checkpoint mechanism identified to date that specializes in monitoring the orientation of cell division in multicellular organisms. Here, by establishing colcemid-induced microtubule depolymerization as a sensitive assay, we examined the characteristics of COC activity and find that it functions uniquely in GSCs but not in their differentiating progeny. We show that the COC operates in the G2 phase of the cell cycle, independently of the spindle assembly checkpoint. This study may provide a framework for identifying and understanding similar mechanisms that might be in place in other asymmetrically dividing cell types.


Asunto(s)
Centrosoma/metabolismo , Drosophila melanogaster/citología , Puntos de Control de la Fase M del Ciclo Celular , Espermatogonias/citología , Testículo/citología , Animales , Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Técnicas de Silenciamiento del Gen , Masculino , Microtúbulos/metabolismo , Mutación , Especificidad de Órganos , Polimerizacion , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...