Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Methods Mol Biol ; 2608: 63-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653702

RESUMEN

Physical confinement in microfluidic devices has become a common technique to induce and study cell migration in a large range of cell types. Confined migration was previously understudied due to the limitations of 2D migration assays but has emerged as an important mode of migration in the past decade. Furthermore, confinement improves the quality of the imaging and simplifies the analysis of trajectories by confining migration to the plane of acquisition. Protocols described in this chapter relate to methods extending the previously published 2D confinement technique. First, we explain a method to increase the complexity of the confinement chamber by microfabricating nanometer-sized PDMS grooves on the bottom surface, usually used for contact guidance studies. Then, we describe a method to perform the confinement on cells embedded inside a µm-thin 3D collagen gel. Finally, we describe an alternative method to confine cells based on agarose, so that cells can be fixed or drug perfused while being confined, which is currently not possible in the 2D confinement silicone-based device.


Asunto(s)
Comunicación Celular , Colágeno , Movimiento Celular , Dispositivos Laboratorio en un Chip
3.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662333

RESUMEN

Cells exist in an astonishing range of volumes across and within species. However, our understanding of cell size control remains limited, owing in large part to the challenges associated with accurate determination of cell volume. Much of our comprehension of size regulation derives from yeast models, but even for these morphologically stereotypical cells, assessment of cell volume has mostly relied on proxies and extrapolations from two-dimensional measurements. Recently, the fluorescence exclusion method (FXm) was developed to evaluate the size of mammalian cells, but whether it could be applied to smaller cells remained unknown. Using specifically designed microfluidic chips and an improved data analysis pipeline, we show here that FXm reliably detects subtle differences in the volume of fission yeast cells, even for those with altered shapes. Moreover, it allows for the monitoring of dynamic volume changes at the single-cell level with high time resolution. Collectively, our work highlights how the coupling of FXm with yeast genetics will bring new insights into the complex biology of cell growth.


Asunto(s)
Saccharomyces cerevisiae , Schizosaccharomyces , Animales , Ciclo Celular , Tamaño de la Célula , Mamíferos , Microfluídica , Saccharomyces cerevisiae/genética
4.
Elife ; 112022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416768

RESUMEN

Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here, we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread or when they are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechanosensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.


Asunto(s)
Actinas , Actinas/metabolismo , Membrana Celular/metabolismo , Forma de la Célula , Tamaño de la Célula , Retroalimentación , Presión Osmótica
5.
Elife ; 112022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088713

RESUMEN

The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells. We find that, during most of the cell cycle, volume growth is close to exponential and proceeds at a higher rate in S-G2 than in G1. Comparing the data with a mathematical model, we establish that the cell-to-cell variability in volume growth arises from constant-amplitude fluctuations in volume steps rather than fluctuations of the underlying specific growth rate. We hypothesize that such 'additive noise' could emerge from the processes that regulate volume adaptation to biophysical cues, such as tension or osmotic pressure.


Asunto(s)
Ciclo Celular/fisiología , Aumento de la Célula , Tamaño de la Célula , Células HeLa , Humanos , Modelos Teóricos
6.
Elife ; 82019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31647411

RESUMEN

The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Células Musculares/metabolismo , Profilinas/metabolismo , Multimerización de Proteína , Animales , Mamíferos
7.
Methods Mol Biol ; 1613: 31-51, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849557

RESUMEN

Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.


Asunto(s)
Expresión Génica , Redes Reguladoras de Genes , Algoritmos , Perfilación de la Expresión Génica , Humanos , Modelos Teóricos , Mapas de Interacción de Proteínas , Transducción de Señal
8.
Aging (Albany NY) ; 8(9): 2127-2152, 2016 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-27677171

RESUMEN

Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.


Asunto(s)
Envejecimiento/fisiología , Simulación por Computador , Longevidad/fisiología , Envejecimiento/efectos de los fármacos , Animales , Humanos , Longevidad/efectos de los fármacos
9.
Biol Open ; 4(10): 1290-7, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26369929

RESUMEN

In this study we show that binding of mitochondria to vimentin intermediate filaments (VIF) is regulated by GTPase Rac1. The activation of Rac1 leads to a redoubling of mitochondrial motility in murine fibroblasts. Using double-mutants Rac1(G12V, F37L) and Rac1(G12V, Y40H) that are capable to activate different effectors of Rac1, we show that mitochondrial movements are regulated through PAK1 kinase. The involvement of PAK1 kinase is also confirmed by the fact that expression of its auto inhibitory domain (PID) blocks the effect of activated Rac1 on mitochondrial motility. The observed effect of Rac1 and PAK1 kinase on mitochondria depends on phosphorylation of the Ser-55 of vimentin. Besides the effect on motility Rac1 activation also decreases the mitochondrial membrane potential (MMP) which is detected by ∼20% drop of the fluorescence intensity of mitochondria stained with the potential sensitive dye TMRM. One of important consequences of the discovered regulation of MMP by Rac1 and PAK1 is a spatial differentiation of mitochondria in polarized fibroblasts: at the front of the cell they are less energized (by ∼25%) than at the rear part.

10.
Oncotarget ; 6(29): 27227-38, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26317900

RESUMEN

Effective choice of anticancer drugs is important problem of modern medicine. We developed a method termed OncoFinder for the analysis of new type of biomarkers reflecting activation of intracellular signaling and metabolic molecular pathways. These biomarkers may be linked with the sensitivity to anticancer drugs. In this study, we compared the experimental data obtained in our laboratory and in the Genomics of Drug Sensitivity in Cancer (GDS) project for testing response to anticancer drugs and transcriptomes of various human cell lines. The microarray-based profiling of transcriptomes was performed for the cell lines before the addition of drugs to the medium, and experimental growth inhibition curves were built for each drug, featuring characteristic IC50 values. We assayed here four target drugs - Pazopanib, Sorafenib, Sunitinib and Temsirolimus, and 238 different cell lines, of which 11 were profiled in our laboratory and 227 - in GDS project. Using the OncoFinder-processed transcriptomic data on ~600 molecular pathways, we identified pathways showing significant correlation between pathway activation strength (PAS) and IC50 values for these drugs. Correlations reflect relationships between response to drug and pathway activation features. We intersected the results and found molecular pathways significantly correlated in both our assay and GDS project. For most of these pathways, we generated molecular models of their interaction with known molecular target(s) of the respective drugs. For the first time, our study uncovered mechanisms underlying cancer cell response to drugs at the high-throughput molecular interactomic level.


Asunto(s)
Antineoplásicos/uso terapéutico , Biología Computacional/métodos , Perfilación de la Expresión Génica , Línea Celular Tumoral , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Genómica , Células HeLa , Células Hep G2 , Humanos , Indazoles , Indoles/química , Concentración 50 Inhibidora , Células Jurkat , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos de Fenilurea/química , Pirimidinas/química , Pirroles/química , Sirolimus/análogos & derivados , Sirolimus/química , Sorafenib , Sulfonamidas/química , Sunitinib , Transcriptoma
11.
Oncotarget ; 5(20): 10198-205, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25415353

RESUMEN

Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for cancer, and compared it with the "traditional" molecular markers based on the expression of individual genes. We applied OncoFinder to profile gene expression datasets for the nine human cancer types including bladder cancer, basal cell carcinoma, glioblastoma, hepatocellular carcinoma, lung adenocarcinoma, oral tongue squamous cell carcinoma, primary melanoma, prostate cancer and renal cancer, totally 292 cancer and 128 normal tissue samples taken from the Gene expression omnibus (GEO) repository. We profiled activation of 82 signaling pathways that involve ~2700 gene products. For 9/9 of the cancer types tested, the PAS values showed better area-under-the-curve (AUC) scores compared to the individual genes enclosing each of the pathways. These results evidence that the PAS values can be used as a new type of cancer biomarkers, superior to the traditional gene expression biomarkers.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal
12.
Front Genet ; 5: 55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24723936

RESUMEN

We propose a new biomathematical method, OncoFinder, for both quantitative and qualitative analysis of the intracellular signaling pathway activation (SPA). This method is universal and may be used for the analysis of any physiological, stress, malignancy and other perturbed conditions at the molecular level. In contrast to the other existing techniques for aggregation and generalization of the gene expression data for individual samples, we suggest to distinguish the positive/activator and negative/repressor role of every gene product in each pathway. We show that the relative importance of each gene product in a pathway can be assessed using kinetic models for "low-level" protein interactions. Although the importance factors for the pathway members cannot be so far established for most of the signaling pathways due to the lack of the required experimental data, we showed that ignoring these factors can be sometimes acceptable and that the simplified formula for SPA evaluation may be applied for many cases. We hope that due to its universal applicability, the method OncoFinder will be widely used by the researcher community.

13.
Front Mol Biosci ; 1: 8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25988149

RESUMEN

The diversity of the installed sequencing and microarray equipment make it increasingly difficult to compare and analyze the gene expression datasets obtained using the different methods. Many applications requiring high-quality and low error rates cannot make use of available data using traditional analytical approaches. Recently, we proposed a new concept of signalome-wide analysis of functional changes in the intracellular pathways termed OncoFinder, a bioinformatic tool for quantitative estimation of the signaling pathway activation (SPA). We also developed methods to compare the gene expression data obtained using multiple platforms and minimizing the error rates by mapping the gene expression data onto the known and custom signaling pathways. This technique for the first time makes it possible to analyze the functional features of intracellular regulation on a mathematical basis. In this study we show that the OncoFinder method significantly reduces the errors introduced by transcriptome-wide experimental techniques. We compared the gene expression data for the same biological samples obtained by both the next generation sequencing (NGS) and microarray methods. For these different techniques we demonstrate that there is virtually no correlation between the gene expression values for all datasets analyzed (R (2) < 0.1). In contrast, when the OncoFinder algorithm is applied to the data we observed clear-cut correlations between the NGS and microarray gene expression datasets. The SPA profiles obtained using NGS and microarray techniques were almost identical for the same biological samples allowing for the platform-agnostic analytical applications. We conclude that this feature of the OncoFinder enables to characterize the functional states of the transcriptomes and interactomes more accurately as before, which makes OncoFinder a method of choice for many applications including genetics, physiology, biomedicine, and molecular diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...