Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134874

RESUMEN

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Asunto(s)
Neuronas , Células Piramidales , Canales de Sodio Activados por Voltaje , Animales , Humanos , Ratones , Potenciales de Acción/fisiología , Axones/metabolismo , Neuronas/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
2.
Elife ; 112022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35532105

RESUMEN

MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.


Asunto(s)
Proteínas del Tejido Nervioso , Receptores AMPA , Moléculas de Adhesión Celular Neuronal/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/fisiología
3.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686348

RESUMEN

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptores Inmunológicos/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células de Lugar/metabolismo , Receptores Inmunológicos/genética , Proteínas Roundabout
5.
Nat Commun ; 11(1): 5171, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057002

RESUMEN

Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function.


Asunto(s)
Región CA3 Hipocampal/fisiología , Proteínas Portadoras/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteínas de la Membrana/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Células Piramidales/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteómica , Ratas , Sinaptosomas/metabolismo
6.
PLoS Biol ; 17(10): e3000466, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658245

RESUMEN

The pre- and postsynaptic membranes comprising the synaptic junction differ in protein composition. The membrane trafficking mechanisms by which neurons control surface polarization of synaptic receptors remain poorly understood. The sorting receptor Sortilin-related CNS expressed 1 (SorCS1) is a critical regulator of trafficking of neuronal receptors, including the presynaptic adhesion molecule neurexin (Nrxn), an essential synaptic organizer. Here, we show that SorCS1 maintains a balance between axonal and dendritic Nrxn surface levels in the same neuron. Newly synthesized Nrxn1α traffics to the dendritic surface, where it is endocytosed. Endosomal SorCS1 interacts with the Rab11 GTPase effector Rab11 family-interacting protein 5 (Rab11FIP5)/Rab11 interacting protein (Rip11) to facilitate the transition of internalized Nrxn1α from early to recycling endosomes and bias Nrxn1α surface polarization towards the axon. In the absence of SorCS1, Nrxn1α accumulates in early endosomes and mispolarizes to the dendritic surface, impairing presynaptic differentiation and function. Thus, SorCS1-mediated sorting in dendritic endosomes controls Nrxn axonal surface polarization required for proper synapse development and function.


Asunto(s)
Proteínas de Unión al Calcio/genética , Corteza Cerebral/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Membranas Sinápticas/metabolismo , Transmisión Sináptica/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Polaridad Celular , Corteza Cerebral/citología , Embrión de Mamíferos , Endocitosis , Endosomas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/ultraestructura , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Ratas , Ratas Wistar , Receptores de Superficie Celular/metabolismo , Membranas Sinápticas/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
7.
Neuron ; 100(1): 201-215.e9, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30290982

RESUMEN

Pyramidal neuron dendrites integrate synaptic input from multiple partners. Different inputs converging on the same dendrite have distinct structural and functional features, but the molecular mechanisms organizing input-specific properties are poorly understood. We identify the orphan receptor GPR158 as a binding partner for the heparan sulfate proteoglycan (HSPG) glypican 4 (GPC4). GPC4 is enriched on hippocampal granule cell axons (mossy fibers), whereas postsynaptic GPR158 is restricted to the proximal segment of CA3 apical dendrites receiving mossy fiber input. GPR158-induced presynaptic differentiation in contacting axons requires cell-surface GPC4 and the co-receptor LAR. Loss of GPR158 increases mossy fiber synapse density but disrupts bouton morphology, impairs ultrastructural organization of active zone and postsynaptic density, and reduces synaptic strength of this connection, while adjacent inputs on the same dendrite are unaffected. Our work identifies an input-specific HSPG-GPR158 interaction that selectively organizes synaptic architecture and function of developing mossy fiber-CA3 synapses in the hippocampus.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo , Animales , Región CA3 Hipocampal/embriología , Células HEK293 , Humanos , Ratones , Fibras Musgosas del Hipocampo/embriología , Neurogénesis/fisiología , Células Piramidales/metabolismo , Ratas , Ratas Long-Evans , Transmisión Sináptica/fisiología
8.
Neuron ; 99(2): 329-344.e7, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29983322

RESUMEN

Pyramidal neurons express rich repertoires of leucine-rich repeat (LRR)-containing adhesion molecules with similar synaptogenic activity in culture. The in vivo relevance of this molecular diversity is unclear. We show that hippocampal CA1 pyramidal neurons express multiple synaptogenic LRR proteins that differentially distribute to the major excitatory inputs on their apical dendrites. At Schaffer collateral (SC) inputs, FLRT2, LRRTM1, and Slitrk1 are postsynaptically localized and differentially regulate synaptic structure and function. FLRT2 controls spine density, whereas LRRTM1 and Slitrk1 exert opposing effects on synaptic vesicle distribution at the active zone. All LRR proteins differentially affect synaptic transmission, and their combinatorial loss results in a cumulative phenotype. At temporoammonic (TA) inputs, LRRTM1 is absent; FLRT2 similarly controls functional synapse number, whereas Slitrk1 function diverges to regulate postsynaptic AMPA receptor density. Thus, LRR proteins differentially control synaptic architecture and function and act in input-specific combinations and a context-dependent manner to specify synaptic properties.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/ultraestructura , Proteínas de la Membrana/análisis , Proteínas de la Membrana/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa/análisis , Moléculas de Adhesión de Célula Nerviosa/ultraestructura , Ratas , Ratas Wistar , Sinapsis/química , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
10.
Neuron ; 95(4): 896-913.e10, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817804

RESUMEN

Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicing-modulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation.


Asunto(s)
Compuestos de Dansilo/metabolismo , Galactosamina/análogos & derivados , Neurturina/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células COS , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Pollos , Técnicas de Cocultivo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Galactosamina/genética , Galactosamina/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neurturina/genética , Mapas de Interacción de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Alineación de Secuencia
11.
Neuron ; 87(4): 764-80, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26291160

RESUMEN

The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here, we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1-knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1-deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer disease, suggesting that perturbed receptor trafficking contributes to synaptic-composition and -function defects underlying synaptopathies.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Receptores de Superficie Celular/fisiología , Animales , Proteínas de Unión al Calcio , Células Cultivadas , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/análisis , Moléculas de Adhesión de Célula Nerviosa/análisis , Neuronas/química , Transporte de Proteínas/fisiología , Ratas , Ratas Long-Evans , Receptores AMPA/análisis , Receptores de Superficie Celular/análisis
12.
Neuron ; 79(4): 696-711, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23911103

RESUMEN

Leucine-rich repeat (LRR) proteins have recently been identified as important regulators of synapse development and function, but for many LRR proteins the ligand-receptor interactions are not known. Here we identify the heparan sulfate (HS) proteoglycan glypican as a receptor for LRRTM4 using an unbiased proteomics-based approach. Glypican binds LRRTM4, but not LRRTM2, in an HS-dependent manner. Glypican 4 (GPC4) and LRRTM4 localize to the pre- and postsynaptic membranes of excitatory synapses, respectively. Consistent with a trans-synaptic interaction, LRRTM4 triggers GPC4 clustering in contacting axons and GPC4 induces clustering of LRRTM4 in contacting dendrites in an HS-dependent manner. LRRTM4 positively regulates excitatory synapse development in cultured neurons and in vivo, and the synaptogenic activity of LRRTM4 requires the presence of HS on the neuronal surface. Our results identify glypican as an LRRTM4 receptor and indicate that a trans-synaptic glypican-LRRTM4 interaction regulates excitatory synapse development.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Glipicanos/metabolismo , Hipocampo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Glipicanos/genética , Hipocampo/citología , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Embarazo , Unión Proteica/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Long-Evans , Sinapsis/metabolismo
13.
EMBO Mol Med ; 4(7): 660-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22488900

RESUMEN

Inherited familial Alzheimer's disease (AD) is characterized by small increases in the ratio of Aß42 versus Aß40 peptide which is thought to drive the amyloid plaque formation in the brain of these patients. Little is known however whether ageing, the major risk factor for sporadic AD, affects amyloid beta-peptide (Aß) generation as well. Here we demonstrate that the secretion of Aß is enhanced in an in vitro model of neuronal ageing, correlating with an increase in γ-secretase complex formation. Moreover we found that peroxynitrite (ONOO(-)), produced by the reaction of superoxide anion with nitric oxide, promoted the nitrotyrosination of presenilin 1 (PS1), the catalytic subunit of γ-secretase. This was associated with an increased association of the two PS1 fragments, PS1-CTF and PS1-NTF, which constitute the active catalytic centre. Furthermore, we found that peroxynitrite shifted the production of Aß towards Aß(42) and increased the Aß(42) /Aß(40) ratio. Our work identifies nitrosative stress as a potential mechanistic link between ageing and AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Senescencia Celular/efectos de los fármacos , Neuronas/metabolismo , Ácido Peroxinitroso/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Dominio Catalítico , Células Cultivadas , Humanos , Ratones , Neuronas/citología , Fragmentos de Péptidos/metabolismo , Presenilina-1/química , Presenilina-1/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Riesgo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...