Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Total Environ ; 912: 168934, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38048999

RESUMEN

In Europe, the general obligation to recycle drives for increased reuse of residues containing Naturally Occurring Radioactive Material (NORM). In agriculture, this has led to the reuse of sludge produced by groundwater filtration facilities as a means of fertilization. In the frame of the RadoNorm project, a methodology was developed for dose assessment of agricultural workers and other members of the public living near agricultural fields in which NORM-containing sludge is applied. Appropriate exposure scenarios were identified and modelled for each relevant NORM decay segment of both U-238 and Th-232 series, as well as for K-40. Dose assessments were performed using the software RESRAD-ONSITE with dose coefficients for external and internal exposure taken from the latest publications from the International Commission on Radiological Protection (ICRP). The objective was to develop a generic methodology to quantify exposure and to obtain screening values - so-called Operational Levels (OLs). These OLs pertain to the activity concentration of natural radionuclides (in terms of kBq kg-1) present in sludge that is reused in agriculture, for which dose criterion of 1 mSv year-1 is complied with. OLs can be used as screening tools by an authority/operator, even non-experts in the field of radiation protection. Results showed that the most critical decay segments are Ra-226+ and Ra-228+, for which OLs of the order of 1 kBq kg-1 were estimated. For all the other radionuclides, the calculated OLs are much higher than the activity concentrations typically found in sludge from water treatment facilities, and the radiological impact expected is well-below 1 mSv year-1. The methodology and results of this study could contribute to the update of the Clearance Levels and discharge levels reported in the European guidelines RP 122 Part II and RP 135, respectively.


Asunto(s)
Monitoreo de Radiación , Uranio , Humanos , Aguas del Alcantarillado , Fertilizantes , Radioisótopos/análisis , Monitoreo de Radiación/métodos
2.
Radiat Prot Dosimetry ; 199(8-9): 962-969, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225203

RESUMEN

A system for internal and voluntary reporting of abnormal events in a Nuclear Medicine Therapy Unit is described. This system is based on the Internet of Things and is composed of an application for mobile devices and a wireless network of detectors. The application is addressed to healthcare professionals and is intended to be a user-friendly tool to make the reporting procedure little laborious. The network of detectors allows for a real-time measurement of the dose distribution in the patient's room. The staff was involved in all stages, from the design of the dosimetry system and mobile application up to their final testing. Face-to-face interviews were carried out with 24 operators in different roles in the Unit (radiation protection experts, physicians, physicists, nuclear medicine technicians and nurses). The preliminary results of the interviews and the current state of development of the application and the detection network will be described.


Asunto(s)
Medicina Nuclear , Protección Radiológica , Humanos , Cintigrafía , Personal de Salud , Internet
3.
Environ Int ; 175: 107954, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37187003

RESUMEN

Naturally occurring radioactive materials (NORM) contribute to the dose arising from radiation exposure for workers, public and non-human biota in different working and environmental conditions. Within the EURATOM Horizon 2020 RadoNorm project, work is ongoing to identify NORM exposure situations and scenarios in European countries and to collect qualitative and quantitative data of relevance for radiation protection. The data obtained will contribute to improved understanding of the extent of activities involving NORM, radionuclide behaviours and the associated radiation exposure, and will provide an insight into related scientific, practical and regulatory challenges. The development of a tiered methodology for identification of NORM exposure situations and complementary tools to support uniform data collection were the first activities in the mentioned project NORM work. While NORM identification methodology is given in Michalik et al., 2023, in this paper, the main details of tools for NORM data collection are presented and they are made publicly available. The tools are a series of NORM registers in Microsoft Excel form, that have been comprehensively designed to help (a) identify the main NORM issues of radiation protection concern at given exposure situations, (b) gain an overview of materials involved (i.e., raw materials, products, by-products, residues, effluents), c) collect qualitative and quantitative data on NORM, and (d) characterise multiple hazards exposure scenarios and make further steps towards development of an integrated risk and exposure dose assessment for workers, public and non-human biota. Furthermore, the NORM registers ensure standardised and unified characterisation of NORM situations in a manner that supports and complements the effective management and regulatory control of NORM processes, products and wastes, and related exposures to natural radiation worldwide.


Asunto(s)
Exposición a la Radiación , Monitoreo de Radiación , Protección Radiológica , Radiactividad , Radioisótopos/análisis , Europa (Continente)
4.
Sci Total Environ ; 881: 163324, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37028656

RESUMEN

Naturally occurring radioactive materials (NORM) are present worldwide and under certain circumstances (e.g., human activities) may give radiation exposure to workers, local public or occasional visitors and non-human biota (NHB) of the surrounding ecosystems. This may occur during planned or existing exposure situations which, under current radiation protection standards, require identification, management, and regulatory control as for other practices associated with man-made radionuclides that may result in the exposure of people and NHB. However, knowledge gaps exist with respect to the extent of global and European NORM exposure situations and their exposure scenario characteristics, including information on the presence of other physical hazards, such as chemical and biological ones. One of the main reasons for this is the wide variety of industries, practices and situations that may utilise NORM. Additionally, the lack of a comprehensive methodology for identification of NORM exposure situations and the absence of tools to support a systematic characterisation and data collection at identified sites may also lead to a gap in knowledge. Within the EURATOM Horizon 2020 RadoNorm project, a methodology for systematic NORM exposure identification has been developed. The methodology, containing consecutive tiers, comprehensively covers situations where NORM may occur (i.e., minerals and raw materials deposits, industrial activities, industrial products and residues and their applications, waste, legacies), and thus, allows detailed investigation and complete identification of situations where NORM may present a radiation protection concern in a country. Details of the tiered methodology, with practical examples on harmonised data collection using a variety of existing sources of information to establish NORM inventories, are presented in this paper. This methodology is flexible and thus applicable to a diversity of situations. It is intended to be used to make NORM inventory starting from the scratch, however it can be used also to systematise and complete existing data.


Asunto(s)
Exposición a la Radiación , Monitoreo de Radiación , Protección Radiológica , Residuos Radiactivos , Humanos , Ecosistema , Radioisótopos/análisis , Unión Europea , Residuos Radiactivos/análisis
5.
Sci Total Environ ; 762: 144150, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33418274

RESUMEN

Uncertainty on long-term average radon concentration has a large impact on lung cancer risk assessment in epidemiological studies. The uncertainty can be estimated by year-to-year radon concentration variability, however few data are available. In Italy a study has been planned and conducted to evaluate year-to-year radon variability over several years in normally inhabited dwellings, mainly located in Rome. This is the longest study of this kind in Europe; repeat radon measurements are carried out for 10 years using LR-115 radon detectors in the same home in consecutive years. The study includes 84 dwellings with long-term average radon concentration ranging from 28 to 636 Bq/m3. The result shows that year-to-year variability of repeated measurements made in the same home in different years is low, with an overall coefficient of variation of 17%. This is smaller than most of those observed in studies from other European countries and USA, ranging from 15% to 62%. Influencing factors that may explain the differences between this study and other studies have been discussed. Due to the low yearly variability estimated in the present 10-year study, a negligible impact on lung cancer risk estimate for the Italian epidemiological study is expected.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Neoplasias Pulmonares , Radón , Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Europa (Continente)/epidemiología , Estudios de Seguimiento , Vivienda , Humanos , Italia/epidemiología , Neoplasias Pulmonares/epidemiología , Radón/análisis , Ciudad de Roma
6.
Radiat Prot Dosimetry ; 162(1-2): 152-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25084794

RESUMEN

As part of a survey on concentrations of radon, thoron and their decay products in different indoor environments of the Balkan region involving international collaboration, measurements were performed in 43 schools from 5 municipalities of the Republic of Macedonia. The time-integrated radon and thoron gas concentrations (CRn and CTn) were measured by CR-39 (placed in chambers with different diffusion barriers), whereas the equilibrium equivalent radon and thoron concentrations (EERC and EETC) were measured using direct radon-thoron progeny sensors consisting of LR-115 nuclear track detectors. The detectors were deployed at a distance of at least 0.5 m from the walls as well as far away from the windows and doors in order to obtain more representative samples of air from the breathing zone; detectors were exposed over a 3-month period (March-May 2012). The geometric mean (GM) values [and geometric standard deviations (GSDs)] of CRn, CTn, EERC and EETC were 76 (1.7), 12 (2.3), 27 (1.4) and 0.75 Bq m(-3) (2.5), respectively. The equilibrium factors between radon and its decay products (FRn) and thoron and its decay products (FTn (>0.5 m)) were evaluated: FRn ranged between 0.10 and 0.84 and FTn (>0.5 m) ranged between 0.003 and 0.998 with GMs (and GSDs) equal to 0.36 (1.7) and 0.07 (3.4), respectively.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Monitoreo de Radiación , Radón/análisis , Mapeo Geográfico , Humanos , Radiometría , República de Macedonia del Norte , Instituciones Académicas , Factores de Tiempo
7.
Radiat Prot Dosimetry ; 145(2-3): 202-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21586542

RESUMEN

Extensive radon surveys have been carried out in many countries only in dwellings, whereas surveys in workplaces are rather sparse and generally restricted to specific workplaces/activities, e.g. schools, spas and caves. Moreover, radon-prone areas are generally defined on the basis of radon surveys in dwellings, while radon regulations use this concept to introduce specific requirements in workplaces in such areas. This approach does not take into account that work activities and workplace characteristics can significantly affect radon concentration. Therefore, an extensive survey on radon in different workplaces have been carried out in a large region of Italy (Tuscany), in order to evaluate radon distribution in workplaces over the whole territory and to identify activities and workplace characteristics affecting radon concentration. The results of this extensive survey are compared with the results of the survey carried out in dwellings in the same period. The workplaces monitored were randomly selected among the main work activities in the region, including both public and industrial buildings. The survey monitored over 3500 rooms in more than 1200 buildings for two consecutive periods of ∼6 months. Radon concentration was measured by means of passive nuclear track detectors.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Vivienda , Exposición Profesional/análisis , Monitoreo de Radiación , Radón/análisis , Humanos , Lugar de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...