Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 24(11): e57264, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37702953

RESUMEN

Cytoplasmic microtubules are tubular polymers that can harbor small proteins or filaments inside their lumen. The identities of these objects and mechanisms for their accumulation have not been conclusively established. Here, we used cryogenic electron tomography of Drosophila S2 cell protrusions and found filaments inside the microtubule lumen, which resemble those reported recently in human HAP1 cells. The frequency of these filaments increased upon inhibition of the sarco/endoplasmic reticulum Ca2+ ATPase with the small molecule drug thapsigargin. Subtomogram averaging showed that the luminal filaments adopt a helical structure reminiscent of cofilin-bound actin (cofilactin). Consistent with this, we observed cofilin dephosphorylation, an activating modification, in cells under the same conditions that increased luminal filament occurrence. Furthermore, RNA interference knock-down of cofilin reduced the frequency of luminal filaments with cofilactin morphology. These results suggest that cofilin activation stimulates its accumulation on actin filaments inside the microtubule lumen.


Asunto(s)
Citoesqueleto de Actina , Citoesqueleto , Humanos , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Microtúbulos/metabolismo
2.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34878519

RESUMEN

The neuronal axon is packed with cytoskeletal filaments, membranes, and organelles, many of which move between the cell body and axon tip. Here, we used cryo-electron tomography to survey the internal components of mammalian sensory axons. We determined the polarity of the axonal microtubules (MTs) by combining subtomogram classification and visual inspection, finding MT plus and minus ends are structurally similar. Subtomogram averaging of globular densities in the MT lumen suggests they have a defined structure, which is surprising given they likely contain the disordered protein MAP6. We found the endoplasmic reticulum in axons is tethered to MTs through multiple short linkers. We surveyed membrane-bound cargos and describe unexpected internal features such as granules and broken membranes. In addition, we detected proteinaceous compartments, including numerous virus-like capsid particles. Our observations outline novel features of axonal cargos and MTs, providing a platform for identification of their constituents.


Asunto(s)
Axones/ultraestructura , Compartimento Celular , Microscopía por Crioelectrón , Espacio Intracelular/metabolismo , Mamíferos/metabolismo , Microtúbulos/ultraestructura , Tomografía , Animales , Axones/metabolismo , Cápside/metabolismo , Cápside/ultraestructura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Ganglios Espinales/metabolismo , Microtúbulos/metabolismo , Análisis Multivariante , Proteínas del Tejido Nervioso/metabolismo
3.
Angew Chem Int Ed Engl ; 55(52): 16172-16176, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-27804198

RESUMEN

Super-resolution microscopy (SRM) greatly benefits from the ability to install small photostable fluorescent labels into proteins. Genetic code expansion (GCE) technology addresses this demand, allowing the introduction of small labeling sites, in the form of uniquely reactive noncanonical amino acids (ncAAs), at any residue in a target protein. However, low incorporation efficiency of ncAAs and high background fluorescence limit its current SRM applications. Redirecting the subcellular localization of the pyrrolysine-based GCE system for click chemistry, combined with DNA-PAINT microscopy, enables the visualization of even low-abundance proteins inside mammalian cells. This approach links a versatile, biocompatible, and potentially unbleachable labeling method with residue-specific precision. Moreover, our reengineered GCE system eliminates untargeted background fluorescence and substantially boosts the expression yield, which is of general interest for enhanced protein engineering in eukaryotes using GCE.


Asunto(s)
ADN/genética , Células Eucariotas/citología , Código Genético , Química Clic , Humanos , Microscopía Fluorescente , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...