Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 40(2): 225-232, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606451

RESUMEN

The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

2.
Microbiol Spectr ; 12(5): e0417923, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511955

RESUMEN

A common feature of N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems is that the AHL signal is autoinducing. Once induced, a cell will further amplify the signal via a positive feedback loop. Pseudomonas fuscovaginae UPB0736 has two fully functional AHL QS systems, called PfsI/R and PfvI/R, which are inactive in a standard laboratory setting. In this work, we induce the QS systems with exogenous AHL signals and characterize the AHL signal amplification effect and QS activation dynamics at community and single-cell level. While the cognate signal is in both cases significantly further amplified to physiologically relevant levels, we observe only a limited response in terms of AHL synthase gene promoter activity. Additionally, the PfsI/R QS system exhibits a unique dramatic phenotypic heterogeneity, where only up to 5% of all cells amplify the signal further and are, thus, considered to be QS active. IMPORTANCE: Bacteria use N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems for population-wide phenotypic coordination. The QS configuration in Pseudomonas fuscovaginae is dramatically different from other model examples of AHL QS signaling and, thus, represents an important exception to the norm, which usually states that QS triggers population-wide phenotypic transitions in relation to cell density. We argue that the differences in QS dynamics of P. fuscovaginae highlight its different evolutionary purpose, which is ultimately dictated by the selective pressures of its natural habitat. We hope that this example will further expand our understanding of the complex and yet unknown QS-enabled sociomicrobiology. Furthermore, we argue that exemptions to the QS norm will be found in other plant-pathogenic bacterial strains that grow in similar environments and that molecularly similar QS systems do not necessarily share a similar evolutionary purpose; therefore, generalizations about bacterial cell-to-cell signaling systems function should be avoided.


Asunto(s)
Acil-Butirolactonas , Ligasas , Pseudomonas , Percepción de Quorum , Pseudomonas/genética , Pseudomonas/fisiología , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas
3.
Microb Biotechnol ; 17(2): e14330, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291799

RESUMEN

The use of microbial inoculants in agriculture as biofertilisers and/or biopesticides is an appealing alternative to replace or reduce the practice of agrochemicals. Plant microbiota studies are revealing the different bacterial groups which are populating plant microbiomes re-energising the plant probiotic bacteria (PPB) translational research sector. Some single-microbial strain bioinoculants have proven valid in agriculture (e.g., based on Trichoderma, mycorrhiza or rhizobia); however, it is now recommended to consider multistrain consortia since plant-beneficial effects are often a result of community-level interactions in plant microbiomes. A limiting step is the selection of a fitting combination of microbial strains in order to accomplish the best beneficial effect upon plant inoculation. In this study, we have used a subset of 23 previously identified and characterised rice-beneficial bacterial colonisers to design and test a series of associated experiments aimed to identify potential PPB consortia which are able to co-colonise and induce plant growth promotion. Bacterial strains were co-inoculated in vitro and in planta using several different methods and their co-colonisation and co-persistence monitored. Results include the identification of two 5-strain and one 2-strain consortia which displayed plant growth-promoting features. Future practical applications of microbiome research must include experiments aimed at identifying consortia of bacteria which can be most effective as crop amendments.


Asunto(s)
Inoculantes Agrícolas , Microbiota , Raíces de Plantas/microbiología , Bacterias/genética , Plantas
5.
Microbiology (Reading) ; 169(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38010341

RESUMEN

Quorum sensing (QS) in proteobacteria is a mechanism to control gene expression orchestrated by the LuxI/LuxR protein family pair, which produces and responds to N-acyl homoserine lactone (AHL) diffusible signal molecules. QS is often regarded as a cell density response via the sensing of/response to the concentrations of AHLs, which are constantly basally produced by bacterial cells. The luxI/R systems, however, undergo supra-regulation in response to external stimuli and many regulators have been implicated in controlling QS in bacteria, although it remains unclear how most of these regulators and cues contribute to the QS response. One regulator, called RsaM, has been reported in a few proteobacterial species to have a stringent role in the control of AHL QS. RsaMs are small, in the range of 140-170 aa long, and are found in several genera, principally in Burkholderia and Acinetobacter. The gene encoding RsaM is always located as an independent transcriptional unit, situated adjacent to QS luxI and/or luxR loci. One of the most remarkable aspects of RsaM is its uniqueness; it does not fall into any of the known bacterial regulatory families and it possesses a distinct and novel fold that does not exhibit binding affinity for nucleic acids or AHLs. RsaM stands out as a distinctive regulator in bacteria, as it is likely to have an important ecological role, as well as unravelling a novel way of gene regulation in bacteria.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Percepción de Quorum/genética , Regulación Bacteriana de la Expresión Génica , Bacterias/genética , Bacterias/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
iScience ; 26(10): 108000, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829197

RESUMEN

The first discovered and well-characterized bacterial quorum sensing (QS) system belongs to Vibrio fischeri, which uses N-acyl homo-serine lactones (AHLs) for cell-cell signaling. AHL QS cell-cell communication is often regarded as a cell density-dependent regulatory switch. Since the discovery of QS, it has been known that AHL concentration (which correlates imperfectly with cell density) is not necessarily the only QS trigger. Additionally, not all cells respond to a QS signal. Bacteria could, via QS, exhibit phenotypic heterogeneity, resulting in sub-populations with unique phenotypes. It is time to ascribe greater importance to QS-dependent phenotypic heterogeneity, and its potential purpose in natura, with emphasis on the division of labor, specialization, and "bet-hedging". We hope that this perspective article will stimulate the awareness that QS can be more than just a cell-density switch. This basic mechanism could result in "bacterial civilizations", thus forcing us to reconsider the way bacterial communities are envisioned in natura.

7.
ISME J ; 17(10): 1523-1525, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37620539
8.
mSystems ; 8(2): e0103922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36802056

RESUMEN

Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.


Asunto(s)
Proteínas Represoras , Transactivadores , Proteínas Represoras/genética , Transactivadores/genética , Proteobacteria/metabolismo , Bacterias/metabolismo , Transducción de Señal
9.
Front Plant Sci ; 13: 1008980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426159

RESUMEN

Pseudomonas fuscovaginae is the most prominent bacterial sheath rot pathogen, causing sheath brown rot disease in rice. This disease occurs worldwide and it is characterized by typical necrotic lesions on the sheath, as well as a reduction in the number of emitted panicles and filled grains. P. fuscovaginae has been shown to produce syringotoxin and fuscopeptin cyclic lipopeptides (CLPs), which have been linked to pathogenicity. In this study, we investigated the role of P. fuscovaginae UPB0736 CLPs in plant pathogenicity, antifungal activity and swarming motility. To do so, we sequenced the strain to obtain a single-contig genome and we constructed deletion mutants in the biosynthetic gene clusters responsible for the synthesis of CLPs. We show that UPB0736 produces a third CLP of 13 amino acids, now named asplenin, and we link this CLP with the swarming activity of the strain. We could then show that syringotoxin is particularly active against Rhizoctonia solani in vitro. By testing the mutants in planta we investigated the role of both fuscopeptin and syringotoxin in causing sheath rot lesions. We proved that the presence of these two CLPs considerably affected the number of emitted panicles, although their number was still significantly affected in the mutants deficient in both fuscopeptin and syringotoxin. These results reveal the importance of CLPs in P. fuscovaginae pathogenicity, but also suggest that other pathogenicity factors may be involved.

10.
Nat Microbiol ; 7(10): 1508-1509, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36123440

Asunto(s)
Plantas , Pseudomonas
11.
Front Plant Sci ; 13: 908349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845658

RESUMEN

Flooding events caused by severe rains and poor soil drainage can interfere with plant germination and seedling establishment. Rice is one of the cereal crops that has unique germination strategies under flooding. One of these strategies is based on the fast coleoptile elongation in order to reach the water surface and re-establish the contact with the air. Microorganisms can contribute to plant health via plant growth promoters and provide protection from abiotic stresses. To characterise the community composition of the microbiome in rice germination under submergence, a 16S rRNA gene profiling metagenomic analysis was performed of temperate japonica rice varieties Arborio and Lamone seedlings, which showed contrasting responses in terms of coleoptile length when submerged. This analysis showed a distinct microbiota composition of Arborio seeds under submergence, which are characterised by the development of a long coleoptile. To examine the potential function of microbial communities under submergence, culturable bacteria were isolated, identified and tested for plant growth-promoting activities. A subgroup of isolated bacteria showed the capacity to hydrolyse starch and produce indole-related compounds under hypoxia. Selected bacteria were inoculated in seeds to evaluate their effect on rice under submergence, showing a response that is dependent on the rice genotype. Our findings suggest that endophytic bacteria possess plant growth-promoting activities that can substantially contribute to rice seedling establishment under submergence.

12.
Environ Int ; 164: 107272, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35526297

RESUMEN

The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aerosoles , Humanos , Rayos Láser , Pandemias , Esterilización
14.
Metabolites ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34436418

RESUMEN

Metabolite annotation from imaging mass spectrometry (imaging MS) data is a difficult undertaking that is extremely resource intensive. Here, we adapted METASPACE, cloud software for imaging MS metabolite annotation and data interpretation, to quickly annotate microbial specialized metabolites from high-resolution and high-mass accuracy imaging MS data. Compared with manual ion image and MS1 annotation, METASPACE is faster and, with the appropriate database, more accurate. We applied it to data from microbial colonies grown on agar containing 10 diverse bacterial species and showed that METASPACE was able to annotate 53 ions corresponding to 32 different microbial metabolites. This demonstrates METASPACE to be a useful tool to annotate the chemistry and metabolic exchange factors found in microbial interactions, thereby elucidating the functions of these molecules.

15.
Plants (Basel) ; 10(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34371669

RESUMEN

The development of biotechnologies based on beneficial microorganisms for improving soil fertility and crop yields could help to address many current agriculture challenges, such as food security, climate change, pest control, soil depletion while decreasing the use of chemical fertilizers and pesticides. Plant growth-promoting (PGP) microbes can be used as probiotics in order to increase plant tolerance/resistance to abiotic/biotic stresses and in this context strains belonging to the Pseudomonas chlororaphis group have shown to have potential as PGP candidates. In this study a new P. chlororaphis isolate is reported and tested for (i) in vitro PGP features, (ii) whole-genome sequence analysis, and (iii) its effects on the rhizosphere microbiota composition, plant growth, and different plant genes expression levels in greenhouse experiments. Results showed that P. chlororaphis ST9 is an efficient rice root colonizer which integrates into the plant resident-microbiota and affects the expression of several plant genes. The potential use of this P. chlororaphis strain as a plant probiotic is discussed.

16.
Front Plant Sci ; 12: 700507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394153

RESUMEN

Agriculture is faced with many challenges including loss of biodiversity, chemical contamination of soils, and plant pests and diseases, all of which can directly compromise plant productivity and health. In addition, inadequate agricultural practices which characterize conventional farming play a contributory role in the disruption of the plant-microbe and soil-plant interactions. This review discusses the role of organic amendments in the restoration of soil health and plant disease management. While the use of organic amendments in agriculture is not new, there is a lack of knowledge regarding its safe and proper deployment. Hence, a biorational approach of organic amendment use to achieve sustainable agricultural practices entails the deployment of botanicals, microbial pesticides, and organic minerals as organic amendments for attaining plant fitness and disease suppression. Here, the focus is on the rhizosphere microbial communities. The role of organic amendments in stimulating beneficial microbe quorum formation related to the host-plant-pathogen interactions, and its role in facilitating induced systemic resistance and systemic-acquired resistance against diseases was evaluated. Organic amendments serve as soil conditioners, and their mechanism of action needs to be further elaborated to ensure food safety.

17.
Environ Microbiol ; 23(12): 7671-7687, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34398481

RESUMEN

Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot-rot symptomatic field-grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co-presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture-dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen-focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.


Asunto(s)
Microbiota , Oryza , Dickeya , Enterobacteriaceae/genética , Microbiota/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética
18.
Trends Plant Sci ; 26(11): 1126-1132, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34334316

RESUMEN

Next-generation sequencing and computational biology has unravelled the different bacterial groups populating plant microbiomes. In addition, microbiologists have discovered many different mechanisms of cell-cell interactions that take place between bacteria. Bacteria use four prevalent mechanisms for intercellular interactions; however, their pertinent role in the formation and maintenance of plant microbiomes is currently unknown. We argue that it is overdue to speed up research on the biotic cell-cell interactions that take place between bacteria in plant microbiomes. This research will have a major impact on both fundamental sciences and translational agriculture via the development of bacterial prebiotic compounds as well probiotics competence, resulting in a more sustainable agriculture of economically important crops.


Asunto(s)
Microbiota , Agricultura , Bacterias/genética , Comunicación Celular , Productos Agrícolas
19.
mSphere ; 6(2)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789944

RESUMEN

LuxR solos are related to quorum sensing (QS) LuxR family regulators; however, they lack a cognate LuxI family protein. LuxR solos are widespread and almost exclusively found in proteobacteria. In this study, we investigated the distribution and conservation of LuxR solos in the fluorescent pseudomonads group. Our analysis of more than 600 genomes revealed that the majority of fluorescent Pseudomonas spp. carry one or more LuxR solos, occurring considerably more frequently than complete LuxI/LuxR archetypical QS systems. Based on the adjacent gene context and conservation of the primary structure, nine subgroups of LuxR solos have been identified that are likely to be involved in the establishment of communication networks. Modeling analysis revealed that the majority of subgroups shows some substitutions at the invariant amino acids of the ligand-binding pocket of QS LuxRs, raising the possibility of binding to non-acyl-homoserine lactone (AHL) ligands. Several mutants and gene expression studies on some LuxR solos belonging to different subgroups were performed in order to shed light on their response. The commonality of LuxR solos among fluorescent pseudomonads is an indication of their important role in cell-cell signaling.IMPORTANCE Cell-cell communication in bacteria is being extensively studied in simple settings and uses chemical signals and cognate regulators/receptors. Many Gram-negative proteobacteria use acyl-homoserine lactones (AHLs) synthesized by LuxI family proteins and cognate LuxR-type receptors to regulate their quorum sensing (QS) target loci. AHL-QS circuits are the best studied QS systems; however, many proteobacterial genomes also contain one or more LuxR solos, which are QS-related LuxR proteins which are unpaired to a cognate LuxI. A few LuxR solos have been implicated in intraspecies, interspecies, and interkingdom signaling. Here, we report that LuxR solo homologs occur considerably more frequently than complete LuxI/LuxR QS systems within the Pseudomonas fluorescens group of species and that they are characterized by different genomic organizations and primary structures and can be subdivided into several subgroups. The P. fluorescens group consists of more than 50 species, many of which are found in plant-associated environments. The role of LuxR solos in cell-cell signaling in fluorescent pseudomonads is discussed.


Asunto(s)
Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Percepción de Quorum , Proteínas Represoras/clasificación , Transactivadores/clasificación
20.
Microb Ecol ; 80(3): 627-642, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32474660

RESUMEN

Rice sheath rot has been mainly associated with the bacterial pathogen Pseudomonas fuscovaginae and in some cases to the fungal pathogen Sarocladium oryzae; it is yet unclear if they are part of a complex disease. The bacterial and fungal community associated with rice sheath rot symptomatic and asymptomatic rice plants was determined/studied with the main aim to shed light on the pathogen(s) causing rice sheath rot. Plant samples were collected from different rice varieties in two locations (highland and lowland) in two rice-growing seasons (wet and dry season) in Burundi. Our results showed that the bacterial Pseudomonas genus was prevalent in highland in both rice-growing seasons and was not affected by rice plant varieties. Pseudomonas sequence reads displayed a significant high similarity to Pseudomonas fuscovaginae indicating that it is the causal agent of rice sheath rot as previously reported. The fungal Sarocladium genus was on the other hand prevalent in lowland only in the wet season; the sequence reads were most significantly similar to Sarocladium oryzae. These studies showed that plant microbiome analysis is very useful in determining the microorganisms involved in a plant disease. P. fuscovaginae and S. oryzae were prevalent in symptomatic samples in highland and lowland respectively being present independently and hence are not part of a complex disease. The significant presence of other bacterial and fungal taxa in symptomatic samples is also discussed possibly making this disease more complex. Finally, we also report the microbial communities that are associated with the plant sheath in symptomatic and asymptomatic plants from the same rice fields.


Asunto(s)
Hypocreales/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/fisiología , Hypocreales/genética , Pseudomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...