Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atheroscler Plus ; 52: 23-31, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287804

RESUMEN

Background and aim: The primary transcript of fibronectin (FN) undergoes alternative splicing to generate different isoforms, including FN containing the Extra Domain A (FN_EDA+), whose expression is regulated spatially and temporarily during developmental and disease conditions including acute inflammation. The role of FN_EDA+ during sepsis, however, remains elusive. Methods: Mice constitutively express the EDA domain of fibronectin (EDA+/+); lacking the FN EDA domain (EDA-/-) or with a conditional ablation of EDA + inclusion only in liver produced FN (alb-CRE+EDA floxed mice) thus expressing normal plasma FN were used. Systemic inflammation and sepsis were induced by either LPS injection (70 mg/kg) or by cecal ligation and puncture (CLP) Neutrophils isolated from septic patients were tested for neutrophil binding ability. Results: We observed that EDA+/+ were protected toward sepsis as compared to EDA-/- mice. Also alb-CRE+EDA floxed mice presented reduced survival, thus indicating a key role for EDA in protecting toward sepsis. This phenotype was associated with improved liver and spleen inflammatory profile. Ex vivo experiments showed that neutrophils bind to a larger extent to an FN_EDA + coated surface as compared to FN, thus potentially limiting their over-reactivity. Conclusions: Our study demonstrates that the inclusion of the EDA domain in fibronectin dampens the nflammatoryi consequences of sepsis.

2.
FASEB J ; 36(11): e22609, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36250380

RESUMEN

Stricture formation is a common complication of Crohn's disease (CD), driven by enhanced deposition of extracellular matrix (ECM) and expansion of the intestinal smooth muscle layers. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an orphan nuclear receptor that exhibits anti-proliferative effects in smooth muscle cells (SMCs). We hypothesized that NR4A1 regulates intestinal SMC proliferation and muscle thickening in the context of inflammation. Intestinal SMCs isolated from Nr4a1+/+ and Nr4a1-/- littermates were subjected to shotgun proteomic analysis, proliferation, and bioenergetic assays. Proliferation was assessed in the presence and absence of NR4A1 agonists, cytosporone-B (Csn-B) and 6-mercaptopurine (6-MP). In vivo, we compared colonic smooth muscle thickening in Nr4a1+/+ and Nr4a1-/- mice using the chronic dextran sulfate sodium (DSS) model of colitis. Second, SAMP1/YitFc mice (a model of spontaneous ileitis) were treated with Csn-B and small intestinal smooth muscle thickening was assessed. SMCs isolated from Nr4a1-/- mice exhibited increased abundance of proteins related to cell proliferation, metabolism, and ECM production, whereas Nr4a1+/+ SMCs highly expressed proteins related to the regulation of the actin cytoskeleton and contractile processes. SMCs isolated from Nr4a1-/- mice exhibited increased proliferation and alterations in cellular metabolism, whereas activation of NR4A1 attenuated proliferation. In vivo, Nr4a1-/- mice exhibited increased colonic smooth muscle thickness following repeated cycles of DSS. Activating NR4A1 with Csn-B, in the context of established inflammation, reduced ileal smooth muscle thickening in SAMP1/YitFc mice. Targeting NR4A1 may provide a novel approach to regulate intestinal SMC phenotype, limiting excessive proliferation that contributes to stricture development in CD.


Asunto(s)
Enfermedad de Crohn , Mercaptopurina , Animales , Células Cultivadas , Constricción Patológica/complicaciones , Constricción Patológica/metabolismo , Enfermedad de Crohn/metabolismo , Sulfato de Dextran , Inflamación/metabolismo , Mercaptopurina/metabolismo , Ratones , Músculo Liso , Miocitos del Músculo Liso/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Fenotipo , Fenilacetatos , Proteómica
3.
Mol Pharmacol ; 100(5): 428-455, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34452975

RESUMEN

Vascular pathology is increased in diabetes because of reactive-oxygen-species (ROS)-induced endothelial cell damage. We found that in vitro and in a streptozotocin diabetes model in vivo, metformin at diabetes-therapeutic concentrations (1-50 µM) protects tissue-intact and cultured vascular endothelial cells from hyperglycemia/ROS-induced dysfunction typified by reduced agonist-stimulated endothelium-dependent, nitric oxide-mediated vasorelaxation in response to muscarinic or proteinase-activated-receptor 2 agonists. Metformin not only attenuated hyperglycemia-induced ROS production in aorta-derived endothelial cell cultures but also prevented hyperglycemia-induced endothelial mitochondrial dysfunction (reduced oxygen consumption rate). These endothelium-protective effects of metformin were absent in orphan-nuclear-receptor Nr4a1-null murine aorta tissues in accord with our observing a direct metformin-Nr4a1 interaction. Using in silico modeling of metformin-NR4A1 interactions, Nr4a1-mutagenesis, and a transfected human embryonic kidney 293T cell functional assay for metformin-activated Nr4a1, we identified two Nr4a1 prolines, P505/P549 (mouse sequences corresponding to human P501/P546), as key residues for enabling metformin to affect mitochondrial function. Our data indicate a critical role for Nr4a1 in metformin's endothelial-protective effects observed at micromolar concentrations, which activate AMPKinase but do not affect mitochondrial complex-I or complex-III oxygen consumption rates, as does 0.5 mM metformin. Thus, therapeutic metformin concentrations requiring the expression of Nr4a1 protect the vasculature from hyperglycemia-induced dysfunction in addition to metformin's action to enhance insulin action in patients with diabetes. SIGNIFICANCE STATEMENT: Metformin improves diabetic vasodilator function, having cardioprotective effects beyond glycemic control, but its mechanism to do so is unknown. We found that metformin at therapeutic concentrations (1-50µM) prevents hyperglycemia-induced endothelial dysfunction by attenuating reactive oxygen species-induced damage, whereas high metformin (>250 µM) impairs vascular function. However, metformin's action requires the expression of the orphan nuclear receptor NR4A1/Nur77. Our data reveal a novel mechanism whereby metformin preserves diabetic vascular endothelial function, with implications for developing new metformin-related therapeutic agents.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Hiperglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Células HEK293 , Humanos , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Estrés Oxidativo/fisiología , Vasodilatadores/farmacología
4.
J Pharmacol Exp Ther ; 370(1): 44-53, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004077

RESUMEN

The pregnane X receptor (PXR) is a ligand-activated nuclear receptor that acts as a xenobiotic sensor, responding to compounds of foreign origin, including pharmaceutical compounds, environmental contaminants, and natural products, to induce transcriptional events that regulate drug detoxification and efflux pathways. As such, the PXR is thought to play a key role in protecting the host from xenobiotic exposure. More recently, the PXR has been reported to regulate the expression of innate immune receptors in the intestine and modulate inflammasome activation in the vasculature. In the current study, we report that activation of the PXR in primed macrophages triggers caspase-1 activation and interleukin-1ß release. Mechanistically, we show that this response is nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3-dependent and is driven by the rapid efflux of ATP and P2X purinoceptor 7 activation following PXR stimulation, an event that involves pannexin-1 gating, and is sensitive to inhibition of Src-family kinases. Our findings identify a mechanism whereby the PXR drives innate immune signaling, providing a potential link between xenobiotic exposure and the induction of innate inflammatory responses.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inflamasomas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor X de Pregnano/metabolismo , Animales , Caspasa 1/metabolismo , Línea Celular Tumoral , Conexinas/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Interleucina-1beta/metabolismo , Cinética , Ligandos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Receptor X de Pregnano/agonistas , Receptores Purinérgicos P2X7/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...