Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 177: 105992, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623607

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) involves protracted pre-symptomatic periods of abnormal motor neuron (MN) excitability occurring in parallel with central and peripheral synaptic perturbations. Focusing on inhibitory control of MNs, we first compared longitudinal changes in pre-synaptic terminal proteins for GABA and glycine neurotransmitters around the soma of retrogradely identified trigeminal jaw closer (JC) MNs and ChAT-labeled midbrain extraocular (EO) MNs in the SOD1G93A mouse model for ALS. Fluorescence immunocytochemistry and confocal imaging were used to quantify GAD67 and GlyT2 synaptic bouton density (SBD) around MN soma at pre-symptomatic ages ∼P12 (postnatal), ∼P50 (adult) and near disease end-stage (∼P135) in SOD1G93A mice and age-matched wild-type (WT) controls. We noted reduced GAD67 innervation in the SOD1G93A trigeminal jaw closer MNs around P12, relative to age-matched WT and no significant difference around P50 and P135. In contrast, both GAD67 and GlyT2 innervation were elevated in the SOD1G93A EO MNs at the pre-symptomatic time points. Considering trigeminal MNs are vulnerable in ALS while EO MNs are spared, we suggest that upregulation of inhibition in the latter might be compensatory. Notable contrast also existed in the innate co-expression patterns of GAD67 and GlyT2 with higher mutual information (co-dependency) in EO MNs compared to JC in both SOD1G93A and WT mice, especially at adult stages (P50 and P135). Around P12 when GAD67 terminals expression was low in the mutant, we further tested for persistent GABA inhibition in those MNs using in vitro patch-clamp electrophysiology. Our results show that SOD1G93A JC MNs have reduced persistent GABA inhibition, relative to WT. Pharmacological blocking of an underlying tonically active GABA conductance using the GABA-α5 subunit inverse agonist, L-655-708, disinhibited WT JC MNs and lowered their recruitment threshold, suggesting its role in the control of intrinsic MN excitability. Quantitative RT-PCR in laser dissected JC MNs further supported a reduction in GABA-α5 subunit mRNA expression in the mutant. In light of our previous report that JC MNs forming putative fast motor units have lower input threshold in the SOD1G93A mice, we suggest that our present result on reduced GABA-α5 tonic inhibition provides for a mechanism contributing to such imbalance. In parallel with reduced GABA inhibition, we noted an increase in voltage-gated L-type Ca2+ currents in the mutant JC MNs around P12. Together these results support that, early modifications in intrinsic properties of vulnerable MNs could be an adaptive response to counter synaptic deficits.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Agonismo Inverso de Drogas , Ácido gamma-Aminobutírico/metabolismo , Ratones Transgénicos , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Canales de Calcio Tipo L/metabolismo
2.
J Undergrad Neurosci Educ ; 22(1): A74-A81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322405

RESUMEN

Teaching scientific literature analysis skills is a critical step in research training. Here I describe a 6-week skill-building module on understanding scientific literature, incorporated into a 10-week undergraduate honors research practice course in Neuroscience. Key pedagogical components include: 1) student-centered active-learning, skill-building and community-building activities; 2) persistent adoption of a proven CREATE method and a novel curate scientific summary (CSS) method for teaching scientific literature analysis skills; 3) collaborative class organization consisting of persistent learning pods (PLPs) to facilitate student-driven participation and peer learning; and, 4) role play of a real research lab. Skill development was assessed using a self-assessment survey (SAS) and longitudinal evaluation of the CREATE and CSS methods application by the PLPs to analyze primary research articles (PRAs) over four weeks. Outcomes demonstrate alleviation of pre-existing student anxiety to read complex scientific literature and advancement of critical-thinking and collaborative skills. Specifically, the SAS responses indicate that student perception about reading scientific literature transformed from being a daunting task to an enjoyable activity; this enhanced their confidence in evaluating scientific literature. PLPs fostered student engagement, peer instruction, and community building, and contributed to skill development. Weekly assessment of CREATE and CSS application highlighted marked improvements in students' abilities to analyze and critique complicated scientific material. Role playing a research lab setting with a focused research theme facilitated integrative understanding of a frontier topic in Neuroscience. The outlined innovative approach can be adopted in Course-based Undergraduate Research Experience (CURE) and should help contribute to systematizing didactic practices to train neuroscientists.

3.
PLoS Comput Biol ; 17(12): e1009644, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871315

RESUMEN

Peristalsis, the coordinated contraction-relaxation of the muscles of the stomach is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICC) and smooth muscle (SM) cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. Understanding of the integrative role of neurotransmission and intercellular coupling in the propagation of an entrained gastric slow-wave, important for understanding motility disorders, however, remains incomplete. Using a computational framework constituted of a novel gastric motility network (GMN) model we address the hypothesis that engaging biological oscillators (i.e., ICCs) by constitutive gap junction coupling mechanisms and enteric neural innervation activated signals can confer a robust entrained gastric slow-wave. We demonstrate that while a decreasing enteric neural innervation gradient that modulates the intracellular IP3 concentration in the ICCs can guide the aboral slow-wave propagation essential for peristalsis, engaging ICCs by recruiting the exchange of second messengers (inositol trisphosphate (IP3) and Ca2+) ensures a robust entrained longitudinal slow-wave, even in the presence of biological variability in electrical coupling strengths. Our GMN with the distinct intercellular coupling in conjunction with the intracellular feedback pathways and a rostrocaudal enteric neural innervation gradient allows gastric slow waves to oscillate with a moderate range of frequencies and to propagate with a broad range of velocities, thus preventing decoupling observed in motility disorders. Overall, the findings provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach, offer directions for future experiments and theoretical work, and can potentially aid in the design of new interventional pharmacological and neuromodulation device treatments for addressing gastric motility disorders.


Asunto(s)
Relojes Biológicos/fisiología , Tracto Gastrointestinal , Músculo Liso , Peristaltismo/fisiología , Sistemas de Mensajero Secundario/fisiología , Animales , Calcio/metabolismo , Biología Computacional , Sinapsis Eléctricas/fisiología , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Células Intersticiales de Cajal/fisiología , Potenciales de la Membrana/fisiología , Modelos Biológicos , Contracción Muscular/fisiología , Músculo Liso/inervación , Músculo Liso/fisiología
4.
Neurobiol Dis ; 141: 104877, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360664

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons throughout the brain and spinal cord progressively degenerate resulting in muscle atrophy, paralysis and death. Recent studies using animal models of ALS implicate multiple cell-types (e.g., astrocytes and microglia) in ALS pathogenesis in the spinal motor systems. To ascertain cellular vulnerability and cell-type specific mechanisms of ALS in the brainstem that orchestrates oral-motor functions, we conducted parallel single cell RNA sequencing (scRNA-seq) analysis using the high-throughput Drop-seq method. We isolated 1894 and 3199 cells from the brainstem of wildtype and mutant SOD1 symptomatic mice respectively, at postnatal day 100. We recovered major known cell types and neuronal subpopulations, such as interneurons and motor neurons, and trigeminal ganglion (TG) peripheral sensory neurons, as well as, previously uncharacterized interneuron subtypes. We found that the majority of the cell types displayed transcriptomic alterations in ALS mice. Differentially expressed genes (DEGs) of individual cell populations revealed cell-type specific alterations in numerous pathways, including previously known ALS pathways such as inflammation (in microglia), stress response (ependymal and an uncharacterized cell population), neurogenesis (astrocytes, oligodendrocytes, neurons), synapse organization and transmission (microglia, oligodendrocyte precursor cells, and neuronal subtypes), and mitochondrial function (uncharacterized cell populations). Other cell-type specific processes altered in SOD1 mutant brainstem include those from motor neurons (axon regeneration, voltage-gated sodium and potassium channels underlying excitability, potassium ion transport), trigeminal sensory neurons (detection of temperature stimulus involved in sensory perception), and cellular response to toxic substances (uncharacterized cell populations). DEGs consistently altered across cell types (e.g., Malat1), as well as cell-type specific DEGs, were identified. Importantly, DEGs from various cell types overlapped with known ALS genes from the literature and with top hits from an existing human ALS genome-wide association study (GWAS), implicating the potential cell types in which the ALS genes function with ALS pathogenesis. Our molecular investigation at single cell resolution provides comprehensive insights into the cell types, genes and pathways altered in the brainstem in a widely used ALS mouse model.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Femenino , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Neuronas/patología , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Superóxido Dismutasa-1/genética , Transcriptoma
5.
J Neurosci ; 39(44): 8798-8815, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31530644

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología , Tegmento Mesencefálico/fisiología , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Femenino , Maxilares/inervación , Maxilares/fisiopatología , Masculino , Mecanorreceptores/fisiología , Ratones Transgénicos , Modelos Neurológicos , Nocicepción/fisiología , Superóxido Dismutasa-1/genética
6.
PLoS Comput Biol ; 15(6): e1007154, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226124

RESUMEN

Neurons utilize bursts of action potentials as an efficient and reliable way to encode information. It is likely that the intrinsic membrane properties of neurons involved in burst generation may also participate in preserving its temporal features. Here we examined the contribution of the persistent and resurgent components of voltage-gated Na+ currents in modulating the burst discharge in sensory neurons. Using mathematical modeling, theory and dynamic-clamp electrophysiology, we show that, distinct from the persistent Na+ component which is important for membrane resonance and burst generation, the resurgent Na+ can help stabilize burst timing features including the duration and intervals. Moreover, such a physiological role for the resurgent Na+ offered noise tolerance and preserved the regularity of burst patterns. Model analysis further predicted a negative feedback loop between the persistent and resurgent gating variables which mediate such gain in burst stability. These results highlight a novel role for the voltage-gated resurgent Na+ component in moderating the entropy of burst-encoded neural information.


Asunto(s)
Modelos Neurológicos , Neuronas/fisiología , Canales de Sodio/fisiología , Potenciales de Acción/fisiología , Animales , Biología Computacional , Retroalimentación Fisiológica , Ratones
7.
Nat Neurosci ; 18(5): 708-17, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25894291

RESUMEN

Intracellular Ca(2+) signaling is considered to be important for multiple astrocyte functions in neural circuits. However, mice devoid of inositol triphosphate type 2 receptors (IP3R2) reportedly lack all astrocyte Ca(2+) signaling, but display no neuronal or neurovascular deficits, implying that astrocyte Ca(2+) fluctuations are not involved in these functions. An assumption has been that the loss of somatic Ca(2+) fluctuations also reflects a similar loss in astrocyte processes. We tested this assumption and found diverse types of Ca(2+) fluctuations in astrocytes, with most occurring in processes rather than in somata. These fluctuations were preserved in Ip3r2(-/-) (also known as Itpr2(-/-)) mice in brain slices and in vivo, occurred in end feet, and were increased by G protein-coupled receptor activation and by startle-induced neuromodulatory responses. Our data reveal previously unknown Ca(2+) fluctuations in astrocytes and highlight limitations of studies that used Ip3r2(-/-) mice to evaluate astrocyte contributions to neural circuit function and mouse behavior.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Reflejo de Sobresalto/fisiología , Animales , Astrocitos/ultraestructura , Cruzamientos Genéticos , Femenino , Colorantes Fluorescentes , Hipocampo/citología , Hipocampo/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Transgénicos , Prazosina/farmacología , Reflejo de Sobresalto/efectos de los fármacos , Programas Informáticos
8.
J Neurosci ; 35(2): 707-20, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589764

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative motoneuron disease with presently no cure. Motoneuron (MN) hyperexcitability is commonly observed in ALS and is suggested to be a precursor for excitotoxic cell death. However, it is unknown whether hyperexcitability also occurs in MNs that are resistant to degeneration. Second, it is unclear whether all the MNs within homogeneous motor pools would present similar susceptibility to excitability changes since high-threshold MNs innervating fast fatigable muscle fibers selectively degenerate compared with low-threshold MNs innervating fatigue resistant slow muscle fibers. Therefore, we concurrently examined the excitability of ALS-vulnerable trigeminal motoneurons (TMNs) controlling jaw musculature and ALS-resistant oculomotor neurons (OMNs) controlling eye musculature in a well studied SOD1(G93A) ALS mouse model using in vitro patch-clamp electrophysiology at presymptomatic ages P8-P12. Our results show that hyperexcitability is not a global change among all the MNs, although mutant SOD1 is ubiquitously expressed. Instead, complex changes occur in ALS-vulnerable TMNs based on motor unit type and discharge characteristics. Firing threshold decreases among high-threshold TMNs and increases in a subpopulation of low-threshold TMNs. The latter group was identified based on their linear frequency-current responses to triangular ramp current injections. Such complex changes in MN recruitment were absent in ALS-resistant OMNs. We simulated the observed complex changes in TMN excitability using a computer-based jaw closer motor pool model. Model results suggest that hypoexcitability may indeed represent emerging disease symptomology that causes resistance in muscle force initiation. Identifying the cellular and molecular properties of these hypoexcitable cells may guide effective therapeutic strategies in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Potenciales de la Membrana , Neuronas Motoras/fisiología , Nervio Oculomotor/fisiopatología , Nervio Trigémino/fisiopatología , Esclerosis Amiotrófica Lateral/genética , Animales , Homeostasis , Músculos Masticadores/inervación , Ratones , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
9.
Cogn Neurodyn ; 6(3): 283-93, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23730358

RESUMEN

The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767-783, 2007). We hypothesize that these two currents offer differential control of PICs and motoneuron excitability based on their probable somatic and dendritic locations, respectively. We reproduced SCI-induced PIC enhancement in a two-compartment motoneuron model that resulted in persistent dendritic plateau potentials. Removing dendritic I KCaL eliminated primary frequency range discharge and produced an abrupt transition into tertiary range firing without significant changes in the overall frequency gain. However, I KCaN removal mainly increased the gain. Steady-state analyses of dendritic membrane potential showed that I KCaL limits plateau potential magnitude and strongly modulates the somatic injected current thresholds for plateau onset and offset. In contrast, I KCaN had no effect on the plateau magnitude and thresholds. These results suggest that impaired function of I KCaL may be an important intrinsic mechanism underlying PIC-induced motoneuron hyperexcitability following SCI.

10.
J Neurophysiol ; 106(5): 2167-79, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21775715

RESUMEN

Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibition can result from complex changes in the strength, kinetics, and reversal potential (E(Cl(-))) of γ-aminobutyric acid A (GABA(A)) and glycine receptor currents. Development of optimal therapeutic strategies requires an understanding of the impact of these interacting factors on motoneuron excitability. We employed computational methods to study the effects of conductance, kinetics, and E(Cl(-)) of a dendritic inhibition on PIC activation and motoneuron discharge. A two-compartment motoneuron with enhanced PICs characteristic of SCI and receiving recurrent inhibition from Renshaw cells was utilized in these simulations. This dendritic inhibition regulated PIC onset and offset and exerted its strongest effects at motoneuron recruitment and in the secondary range of the current-frequency relationship during PIC activation. Increasing inhibitory conductance compensated for moderate depolarizing shifts in E(Cl(-)) by limiting PIC activation and self-sustained firing. Furthermore, GABA(A) currents exerted greater control on PIC activation than glycinergic currents, an effect attributable to their slower kinetics. These results suggest that modulation of the strength and kinetics of GABA(A) currents could provide treatment strategies for uncontrollable spasms.


Asunto(s)
Modelos Neurológicos , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Reflejo Anormal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Dendritas/fisiología , Neuronas GABAérgicas/fisiología , Humanos , Cinética , Potenciales de la Membrana/fisiología , Espasticidad Muscular/fisiopatología , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Sinapsis/fisiología
11.
J Comput Neurosci ; 22(2): 223-38, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17072755

RESUMEN

The mechanism of switching activity patterns in a central pattern generator is fundamental to the generation of diverse motor behaviors. Based on what is known about a brainstem substrate mediating the oral components of ingestion and rejection, we use computational techniques to construct a hypothetical multifunctional network that switches between the motor outputs of ingestion (licking) and rejection (gaping). The network was constructed using single-compartment conductance-based models for individual neurons based on Hodgkin-Huxley formalism. Using a fast-slow reduction and geometric analysis we describe a mechanism for pattern switching between licks and gapes. The model supports the hypothesis that a single configuration of network connections can produce both activity patterns. It further predicts that prolonged inhibition of some network neurons could lead to a switch in network activity from licks to gapes.


Asunto(s)
Simulación por Computador , Ingestión de Alimentos/fisiología , Modelos Biológicos , Actividad Motora/fisiología , Sistema Estomatognático/fisiología , Gusto/fisiología , Animales , Deglución/fisiología , Conducta Alimentaria , Potenciales de la Membrana/fisiología , Neuronas Motoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA