Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Nutr ; 17(1): 13, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945490

RESUMEN

BACKGROUND: Obesity is a serious disease with a complex etiology characterized by overaccumulation of adiposity resulting in detrimental health outcomes. Given the liver's critical role in the biological processes that attenuate adiposity accumulation, elucidating the influence of genetics and dietary patterns on hepatic gene expression is fundamental for improving methods of obesity prevention and treatment. To determine how genetics and diet impact obesity development, mice from 22 strains of the genetically diverse recombinant inbred Collaborative Cross (CC) mouse panel were challenged to either a high-protein or high-fat high-sucrose diet, followed by extensive phenotyping and analysis of hepatic gene expression. RESULTS: Over 1000 genes differentially expressed by perturbed dietary macronutrient composition were enriched for biological processes related to metabolic pathways. Additionally, over 9000 genes were differentially expressed by strain and enriched for biological process involved in cell adhesion and signaling. Weighted gene co-expression network analysis identified multiple gene clusters (modules) associated with body fat % whose average expression levels were influenced by both dietary macronutrient composition and genetics. Each module was enriched for distinct types of biological functions. CONCLUSIONS: Genetic background affected hepatic gene expression in the CC overall, but diet macronutrient differences also altered expression of a specific subset of genes. Changes in macronutrient composition altered gene expression related to metabolic processes, while genetic background heavily influenced a broad range of cellular functions and processes irrespective of adiposity. Understanding the individual role of macronutrient composition, genetics, and their interaction is critical to developing therapeutic strategies and policy recommendations for precision nutrition.

2.
Biol Sex Differ ; 13(1): 14, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410390

RESUMEN

INTRODUCTION: CD44 is a candidate gene for obesity and diabetes development and may be a critical mediator of a systemic inflammation associated with obesity and diabetes. METHODS: We investigated the relationship of CD44 with obesity in CD44-deficient mice challenged with a high-fat diet. RESULTS: In mice fed a diet high in fat, cholesterol, and sucrose for 12 weeks fat mass accumulation was reduced in CD44-deficient mice bred onto both a C57BL/6J and the naturally TLR deficient C3H/HeJ background. Reduced fat mass could not be attributed to lower food intake or an increase in energy expenditure as measured by indirect calorimetry. However, we observed a 40-60% lower mRNA expression of the inflammation markers, F4/80, CD11b, TNF-α, and CD14, in adipose tissue of CD44-deficient mice on the C57BL/6J background but not the C3H/HeJ background, perhaps indicating that alternative factors may be affecting adiposity in this model. Measures of hepatic steatosis and insulin sensitivity were improved in CD44-deficient mice on a C57BL/6J but not in the C3H/HeJ mice. These results were highly sexually dimorphic as there were no detectable effects of CD44 inactivation in female mice on a C57BL/6 J or C3H/HeJ background. CONCLUSION: CD44 was associated with adiposity, liver fat, and glucose in male mice. However, the effects of CD44 on obesity may be independent of TLR4 signaling.


Asunto(s)
Diabetes Mellitus , Receptores de Hialuranos/genética , Obesidad , Animales , Femenino , Antecedentes Genéticos , Inflamación , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Obesidad/metabolismo
3.
G3 (Bethesda) ; 10(7): 2529-2541, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32467129

RESUMEN

Plasma concentration of Cystatin C (CysC) level is a biomarker of glomerular filtration rate in the kidney. We use a Systems Genetics approach to investigate the genetic determinants of plasma CysC concentration. To do so we perform Quantitative Trait Loci (QTL) and expression QTL (eQTL) analysis of 120 Diversity Outbred (DO) female mice, 56 weeks of age. We performed network analysis of kidney gene expression to determine if the gene modules with common functions are associated with kidney biomarkers of chronic kidney diseases. Our data demonstrates that plasma concentrations and kidney mRNA levels of CysC are associated with genetic variation and are transcriptionally coregulated by immune genes. Specifically, Type-I interferon signaling genes are coexpressed with Cst3 mRNA levels and associated with CysC concentrations in plasma. Our findings demonstrate the complex control of CysC by genetic polymorphisms and inflammatory pathways.


Asunto(s)
Ratones de Colaboración Cruzada , Cistatina C , Animales , Biomarcadores , Cistatina C/genética , Femenino , Ratones , Sitios de Carácter Cuantitativo
4.
Front Genet ; 11: 615012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643372

RESUMEN

Defined as chronic excessive accumulation of adiposity, obesity results from long-term imbalance between energy intake and expenditure. The mechanisms behind how caloric imbalance occurs are complex and influenced by numerous biological and environmental factors, especially genetics, and diet. Population-based diet recommendations have had limited success partly due to the wide variation in physiological responses across individuals when they consume the same diet. Thus, it is necessary to broaden our understanding of how individual genetics and diet interact relative to the development of obesity for improving weight loss treatment. To determine how consumption of diets with different macronutrient composition alter adiposity and other obesity-related traits in a genetically diverse population, we analyzed body composition, metabolic rate, clinical blood chemistries, and circulating metabolites in 22 strains of mice from the Collaborative Cross (CC), a highly diverse recombinant inbred mouse population, before and after 8 weeks of feeding either a high protein or high fat high sucrose diet. At both baseline and post-diet, adiposity and other obesity-related traits exhibited a broad range of phenotypic variation based on CC strain; diet-induced changes in adiposity and other traits also depended largely on CC strain. In addition to estimating heritability at baseline, we also quantified the effect size of diet for each trait, which varied by trait and experimental diet. Our findings identified CC strains prone to developing obesity, demonstrate the genotypic and phenotypic diversity of the CC for studying complex traits, and highlight the importance of accounting for genetic differences when making dietary recommendations.

5.
J Biol Chem ; 291(45): 23793-23803, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27655915

RESUMEN

Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-induced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.


Asunto(s)
Apolipoproteínas A/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hígado Graso/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Enfermedad Aguda , Animales , Apolipoproteínas A/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Regulación de la Expresión Génica , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación hacia Arriba
6.
Arterioscler Thromb Vasc Biol ; 33(11): 2501-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24030551

RESUMEN

OBJECTIVE: Previous studies demonstrated that apolipoprotein A-IV (apoA-IV) promotes apoB lipoprotein-mediated triglyceride (TG) secretion in transfected enterocytes and hepatoma cells; however, evidence for a role in lipid transport in vivo is lacking. Using mouse models, we explored the role of apoA-IV in hepatic very low density lipoprotein-mediated lipid efflux under conditions that promote hepatic steatosis. APPROACH AND RESULTS: Hepatic steatosis, induced by either high-fat diet or enhanced de novo lipogenesis caused by transgenic overexpression of SREBP-1a (SREBP-1a(Tg)), was associated with up to a 43-fold induction of hepatic apoA-IV mRNA and protein levels. In both models, a positive linear correlation between hepatic TG content and apoA-IV mRNA abundance was observed (r(2)=0.8965). To examine whether induction of apoA-IV affected hepatic TG secretion, SREBP-1a(Tg) mice were crossed with Apoa4 knockout mice. With Triton blockade of peripheral lipolysis, SREBP-1a(Tg)/Apoa4 knockout mice demonstrated a 24% reduction in hepatic TG secretion rate, relative to SREBP-1a(Tg) controls, but no change in apoB production. Negative stain electron microscopy revealed a 33% decrease in the abundance of secreted very low density lipoprotein particles with diameters ≥ 120 nm. Conversely, mice infected with a recombinant human apoA-IV adenovirus demonstrated a 52% increase in the hepatic TG secretion rate, relative to controls, a 38% reduction in liver TG content, and a 43% increase in large diameter (≥ 120 nm) very low density lipoprotein particles, with no change in apoB secretion. CONCLUSIONS: Hepatic steatosis in mice induces hepatic apoA-IV expression, which in turn promotes lipoprotein particle expansion and reduces hepatic lipid burden without increasing the number of secreted atherogenic apoB-containing lipoprotein particles.


Asunto(s)
Apolipoproteínas A/genética , Hígado Graso/fisiopatología , Metabolismo de los Lípidos/fisiología , Lipoproteínas VLDL/metabolismo , Hígado/fisiología , Triglicéridos/metabolismo , Animales , Apolipoproteínas A/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Femenino , Expresión Génica/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...