Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Ther ; 41(1): 198-214, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882884

RESUMEN

INTRODUCTION: Vosoritide is the first precision medical therapy approved to increase growth velocity in children with achondroplasia. Sharing early prescribing experiences across different regions could provide a framework for developing practical guidance for the real-world use of vosoritide. METHODS: Two meetings were held to gather insight and early experience from experts in Europe, the Middle East, and the USA. The group comprised geneticists, pediatric endocrinologists, pediatricians, and orthopedic surgeons. Current practices and considerations for vosoritide were discussed, including administration practicalities, assessments, and how to manage expectations. RESULTS: A crucial step in the management of achondroplasia is to determine if adequate multidisciplinary support is in place. Training for families is essential, including practical information on administration of vosoritide, and how to recognize and manage injection-site reactions. Advocated techniques include establishing a routine, empowering patients by allowing them to choose injection sites, and managing pain. Patients may discontinue vosoritide if they cannot tolerate daily injections or are invited to participate in a clinical trial. Clinicians in Europe and the Middle East emphasized the importance of assessing adherence to daily injections, as non-adherence may impact response and reimbursement. Protocols for monitoring patients receiving vosoritide may be influenced by regional differences in reimbursement and healthcare systems. Core assessments may include pubertal staging, anthropometry, radiography to confirm open physes, the review of adverse events, and discussion of concomitant or new medications-but timing of these assessments may also differ regionally and vary across institutions. Patients and families should be informed that response to vosoritide can vary in both magnitude and timing. Keeping families informed regarding vosoritide clinical trial data is encouraged. CONCLUSION: The early real-world experience with vosoritide is generally positive. Sharing these insights is important to increase understanding of the practicalities of treatment with vosoritide in the clinical setting.


Asunto(s)
Acondroplasia , Péptido Natriurético Tipo-C , Niño , Humanos , Péptido Natriurético Tipo-C/uso terapéutico , Atención a la Salud , Manejo del Dolor , Acondroplasia/tratamiento farmacológico
2.
Proc Natl Acad Sci U S A ; 119(45): e2212178119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322718

RESUMEN

Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.


Asunto(s)
Ácido Cítrico , Simportadores , Animales , Ratones , Ácido Cítrico/metabolismo , Simportadores/metabolismo , Durapatita/metabolismo , Citratos , Ciclo del Ácido Cítrico , Osteoblastos/metabolismo , Mamíferos/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo
3.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792563

RESUMEN

Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. GWAS have identified hundreds of loci influencing BMD, but few have been functionally analyzed. In this study, we show that SNPs within a BMD locus on chromosome 14q32.32 alter splicing and expression of PAR-1a/microtubule affinity regulating kinase 3 (MARK3), a conserved serine/threonine kinase known to regulate bioenergetics, cell division, and polarity. Mice lacking Mark3 either globally or selectively in osteoblasts have increased bone mass at maturity. RNA profiling from Mark3-deficient osteoblasts suggested changes in the expression of components of the Notch signaling pathway. Mark3-deficient osteoblasts exhibited greater matrix mineralization compared with controls that was accompanied by reduced Jag1/Hes1 expression and diminished downstream JNK signaling. Overexpression of Jag1 in Mark3-deficient osteoblasts both in vitro and in vivo normalized mineralization capacity and bone mass, respectively. Together, these findings reveal a mechanism whereby genetically regulated alterations in Mark3 expression perturb cell signaling in osteoblasts to influence bone mass.


Asunto(s)
Densidad Ósea/genética , Huesos/metabolismo , Cromosomas de los Mamíferos , Variación Genética , Osteoblastos/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/genética , Animales , Huesos/citología , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Ratones , Ratones Noqueados , Tamaño de los Órganos/genética , Osteoblastos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-30127804

RESUMEN

BACKGROUND: Multiple Endocrine Neoplasia Type 1 (MEN1) is a rare autosomal dominant disease that generally presents with primary hyperparathyroidism. However, initial presentation may vary and continued reevaluation of etiology of symptoms is required for appropriate diagnosis. CASE PRESENTATION: Twelve year old female presented with altered mental status that self-resolved and hypoglycemia. Laboratory evaluation revealed pituitary dysfunction with central hypothyroidism and adrenal insufficiency in the setting of hyperprolactinemia. Macroadenoma was confirmed on imaging. Despite medical treatment of pituitary hormone disorders, she continued to have significant hypoglycemia and further workup revealed hyperinsulinism. Insulinoma was identified and confirmed by endoscopic ultrasound. Hypoglycemia resolved after laproscopic enucleation of the insulinoma. CONCLUSION: Children presenting with one endocrine tumor should be investigated for other potential endocrine tumors. Multiple imaging modalities may be required to confidently identify neuroendocrine tumors for appropriate surgical intervention.

5.
Artículo en Inglés | MEDLINE | ID: mdl-29991031

RESUMEN

The emergence of the endochondral skeleton in terrestrial animals enabled ambulation against increased gravitational forces and provided a storage site for scarce minerals essential for life. This skeletal upgrade increased overall fuel requirements and altered global energy balance, prompting the evolution of endocrine networks to coordinate energy expenditure. Bone-forming osteoblasts require a large and constant supply of energy substrates to fuel bone matrix production and mineralization. When fuel demands are unmet, bone quality and strength are compromised. Recent studies suggest that key developmental signaling pathways are coupled to bioenergetic programs, accommodating changes in energy requirements at different stages of the osteoblast life cycle. Studies in genetically altered mice have confirmed a link between bone cells and global metabolism and have led to the identification of hormonal interactions between the skeleton and other tissues. These observations have prompted new questions regarding the nature of the mechanisms of fuel sensing and processing in the osteoblast and their contribution to overall energy utilization and homeostasis. Answers to such questions should advance our understanding of metabolic diseases and may ultimately improve treatments for patients with diabetes and osteoporosis.


Asunto(s)
Metabolismo Energético/fisiología , Homeostasis , Osteoblastos/fisiología , Animales , Desarrollo Óseo/fisiología , Huesos/fisiología , Ácido Cítrico/metabolismo , Sistema Endocrino/fisiología , Humanos , Insulina/fisiología , Leptina/fisiología , Osteoblastos/metabolismo , Osteocalcina/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...