Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Food Microbiol ; 416: 110659, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38461732

RESUMEN

Fungi are a problem for viticulture as they can lead to deterioration of grapes and mycotoxins production. Despite the widespread use of synthetic fungicides to control fungi, their impact on the agricultural ecosystem and human health demand safer and eco-friendly alternatives. This study aimed to produce, characterize and assess the antifungal activity of carvacrol loaded in nanocapsules of Eudragit® and chia mucilage as strategy for controlling Botrytis cinerea, Aspergillus flavus, Aspergillus carbonarius, and Aspergillus niger. Eudragit® and chia mucilage were suitable wall materials, as both favored the encapsulation of carvacrol into nanometric diameter particles. Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested a successful incorporation of carvacrol into both nanocapsules, which was confirmed by presenting a good encapsulation efficiency and loading capacity. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analyses revealed adequate thermal resistance. All fungi were sensible to carvacrol treatments and B. cinerea was the most sensitive compared to the Aspergillus species. Lower concentrations of encapsulated carvacrol than the unencapsulated form were required to inhibit fungi in the in vitro and grape assays. Additionally, lower levels of carvacrol (unencapsulated or encapsulated) were used to inhibit fungal growth and ochratoxin synthesis on undamaged grapes in comparison to those superficially damaged, highlighting the importance of management practices designed to preserve berry integrity during cultivation, storage or commercialization. When sublethal doses of carvacrol were used, the growth of A. niger and A. carbonarius was suppressed by at least 45 %, and ochratoxins were not found. The nanoencapsulation of carvacrol using Eudragit® and chia mucilage has proven to be an alternative to mitigate the problems with fungi and mycotoxins faced by the grape and wine sector.


Asunto(s)
Cimenos , Micotoxinas , Nanocápsulas , Ocratoxinas , Ácidos Polimetacrílicos , Vitis , Humanos , Vitis/microbiología , Antifúngicos/metabolismo , Ecosistema , Micotoxinas/análisis , Aspergillus niger
2.
Int J Food Microbiol ; 415: 110644, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38417280

RESUMEN

Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-ß-ionone, ß-ionone, dihydroactinidiolide, linalool oxide, and ß-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.


Asunto(s)
Aspergillus , Bacillus , Norisoprenoides , Ocratoxinas , Vitis , Humanos , Vitis/microbiología , Bacillus/genética , Bacillus/química , Genómica
3.
Braz J Microbiol ; 55(1): 269-280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228937

RESUMEN

Pseudomonas sp. 4B isolated from the effluent pond of a bovine abattoir was investigated as antifungal against toxigenic fungi. The complete genome of Pseudomonas 4B was sequenced using the Illumina MiSeq platform. Phylogenetic analysis and genome comparisons indicated that the strain belongs to the Pseudomonas aeruginosa group. In silico investigation revealed gene clusters associated with the biosynthesis of several antifungals, including pyocyanin, rhizomide, thanamycin, and pyochelin. This bacterium was investigated through antifungal assays, showing an inhibitory effect against all toxigenic fungi tested. Bacterial cells reduced the diameter of fungal colonies, colony growth rate, and sporulation of each indicator fungi in 10-day simultaneous growing tests. The co-incubation of bacterial suspension and fungal spores in yeast extract-sucrose broth for 48 h resulted in reduced spore germination. During simultaneous growth, decreased production of aflatoxin B1 and ochratoxin A by Aspergillus flavus and Aspergillus carbonarius, respectively, was observed. Genome analysis and in vitro studies showed the ability of P. aeruginosa 4B to reduce fungal growth parameters and mycotoxin levels, indicating the potential of this bacterium to control toxigenic fungi. The broad antifungal activity of this strain may represent a sustainable alternative for the exploration and subsequent use of its possible metabolites in order to control mycotoxin-producing fungi.


Asunto(s)
Antifúngicos , Micotoxinas , Animales , Bovinos , Pseudomonas/metabolismo , Filogenia , Aspergillus flavus/metabolismo , Micotoxinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Hongos/metabolismo
4.
J Sci Food Agric ; 104(5): 2971-2979, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38041655

RESUMEN

BACKGROUND: Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS: In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTS•+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION: The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.


Asunto(s)
Lactobacillales , Sorghum , Lactobacillales/metabolismo , Sorghum/química , Granos Enteros , Antioxidantes/metabolismo , Grano Comestible/metabolismo
5.
Int J Food Microbiol ; 389: 110107, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36731201

RESUMEN

Bacillus-based biocontrol agents have emerged as a strategy to eliminate or reduce the use of synthetic fungicides that are detrimental to health and the environment. In vineyards, a special concern arises from the control of Aspergillus carbonarius, a fungus known for its potential to produce ochratoxins. Ochratoxin A (OTA) is the most toxic form among ochratoxins and its maximum limit in wine has been established in Europe and Brazil as 2 µg/kg. Wine quality, especially the volatile profile, may be influenced by the antifungal strategies, since fungicide residues are transferred from grapes to must during winemaking. The objective of this study was to evaluate, for the first time, the impact of a biocontrol strategy containing Bacillus velezensis P1 on the volatile profile and occurrence of ochratoxins when grapes infected with A. carbonarius were used in winemaking. The evaluation of ochratoxins was carried out by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and volatile compounds were analyzed using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC/qMS). Six ochratoxins were identified in must prepared with Chardonnay grapes inoculated with A. carbonarius (ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide and OTA). Although winemaking causes a decrease in the levels of all forms of ochratoxins, the co-occurrence of these mycotoxins was verified in wine made with grapes containing A. carbonarius. B. velezensis P1 prevented the occurrence of ochratoxins in must, ensuring the safety of wines. Regarding the volatile profile, a predominant presence of terpenic compounds was verified in samples treated with B. velezensis when compared with those not treated with the biocontrol strategy, whereas the presence of A. carbonarius resulted in a higher concentration of volatile compounds with an odor described as fatty/waxy, possibly compromising wine quality. Therefore, B. velezensis P1 is a new biofungicide possibility to produce ochratoxin-free grapes and high-quality wines.


Asunto(s)
Ocratoxinas , Vitis , Vino , Vitis/microbiología , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Vino/microbiología , Ocratoxinas/análisis , Europa (Continente) , Cromatografía Liquida
6.
Artículo en Inglés | MEDLINE | ID: mdl-34702135

RESUMEN

Bacillus spp. have been used as a biocontrol strategy to eliminate/reduce toxic fungicides in viticulture. Furthermore, the presence of fungi that are resistant to commonly used products is frequent, highlighting the need for new biocontrol strains. Aspergillus carbonarius can produce ochratoxins, including ochratoxin A (OTA), which has a regulatory maximum allowable limit for grape products. The purpose of this study was to assess the ability of four Amazonian strains of Bacillus (P1, P7, P11, and P45) to biocontrol A. carbonarius and various forms of ochratoxins in grapes. Berries treated with strain P1 presented no fungal colonies (100% reduction), while P7, P11 and P45 strains caused a reduction of 95, 95 and 61% on fungal counts, respectively. Six forms of ochratoxin were found in the grapes inoculated with A. carbonarius, including ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide, and OTA. Four of these ochratoxin forms (ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide) are reported for the first time in grapes. These ochratoxins were identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS). All Bacillus strains inhibited the synthesis of OTA, which is the most toxic form of ochratoxin. No ochratoxin form was found when P1 and P7 were used. Although some forms of ochratoxin were detected in grapes treated with Bacillus spp. P11 and P45, the levels decreased by 97%. To our knowledge, this is the first report on the inhibition of Aspergillus carbonarius-derived ochratoxin by Bacillus species. P1 strain, identified as Bacillus velezensis, was found to be the most promising for completely inhibiting fungal growth and production of all ochratoxins.


Asunto(s)
Aspergillus/química , Bacillus/química , Fungicidas Industriales/análisis , Ocratoxinas/análisis , Vitis/química , Cromatografía Líquida de Alta Presión , Frutas/química , Espectrometría de Masas en Tándem
7.
Food Res Int ; 141: 110145, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33642011

RESUMEN

Dehydration of grapes has been used in various regions of the world to produce special wines, aiming to add value to oenological products. Post-harvest dehydration in rooms may be carried out regardless of weather conditions, without the additional cost of a specific infrastructure, in addition to the benefits of protecting the grapes from damages and environmental pollution. The objective of this study was to verify, for the first time, the impact of the dehydration in a naturally ventilated room on the quality of Merlot grapes. Physicochemical characteristics, mycobiota, occurrence of mycotoxins, volatile profile and phenolic composition of grapes were monitored on 7th, 14th and 21st days of dehydration (weight loss of 10, 20 and 27%, respectively). A decrease in aw (6%), pH (4%), and berry hardness (58%), along with an increase in total soluble solid content (15%) were observed during dehydration. The presence of Pestalotiopsis clavispora, Neopestalotiopsis clavispora, Colletotrichum siamense and Alternaria porri was favored during the dehydration process, while a decrease in the occurrence of Aspergillus niger and Phanerochaete sp. was verified. A. niger isolates showed no potential to produce forms of ochratoxins. These toxins were also not found in the grape samples. Regarding the volatile profile, 1-hexanal, 2-hexenal, and 1-octanal gave rise to the corresponding alcohols during dehydration, such as 1-hexanol, 2-hexen-1-ol, and 1-octanol. Acids (hexanoic, decanoic, and 3-hexenoic) resulted in the respective ethyl esters (hexanoate, decanoate, and ethyl 3-hexenoate) during dehydration. Terpenes as limonene, myrcene, and geraniol decreased throughout dehydration, while their biotransformation products (α-terpineol, 6-methyl-5-hepten-2-one, and linalool, respectively) had an increase in concentration. The phenolic content oscillated during dehydration, with an emphasis on increased levels of four hydroxybenzoic acids (ethyl gallate, p-hydroxybenzoic acid, gallic acid-hexose, and gallic acid), two hydroxycinnamic acids (caffeic acid and caftaric acid), two flavonols (kaempeferol galactoside and quercetin) and two anthocyanins (peonidin 3-O-hexoside and delphinidin 3-O-hexoside). Grapes of satisfactory quality were produced by dehydration in a naturally ventilated room. Even small wine producers can be encouraged to implement this procedure for the diversification of oenological products, as it has no costs related to the implementation of chambers/tunnels.


Asunto(s)
Ocratoxinas , Vitis , Vino , Alternaria , Ascomicetos , Colletotrichum , Deshidratación , Ocratoxinas/análisis , Vino/análisis
8.
J Sci Food Agric ; 101(6): 2414-2421, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33012097

RESUMEN

BACKGROUND: Aspergillus carbonarius has been identified as one of the main fungi that produce ochratoxin A (OTA) in grapes. This nephrotoxic mycotoxin has been legislated against in several countries and is a major concern for viticulture. Knowledge of resistance to, or susceptibility to, colonization by A. carbonarius may be useful in selecting the most promising cultivars for organic agriculture and could help in preventing fungal contamination in vineyards. This study aimed to evaluate the colonization potential and the capacity to produce OTA by A. carbonarius in Vitis vinifera, V. labrusca, and hybrid grapes. The correlation between OTA levels and grape berry characteristics was also analyzed. RESULTS: The OTA content was only strongly correlated with the thickness and hardness of the grape skins. The correlation between OTA levels and these parameters was negative (grapes with the least thickness and hardness had the highest OTA levels). Vitis vinifera grapes were more susceptible to A. carbonarius than V. labrusca and hybrid grapes at both 25 and 4 °C. Chardonnay (V. vinifera) grapes showed the highest levels of OTA, followed by Merlot, Cabernet Sauvignon, Tannat, and Moscato Branco. Italia grapes were the exceptions among V. vinifera cultivars, since they showed similar thickness, hardness, and fungal resistance as the V. labrusca and hybrid grapes. CONCLUSION: The highest resistance to A. carbonarius was observed in the following grapes: hybrids (BRS Lorena and BRS Violeta), V. labrusca (Isabel and Bordo), and V. vinifera (Italia). These cultivars can be prioritized in the implementation of organic viticulture. © 2020 Society of Chemical Industry.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Frutas/química , Ocratoxinas/análisis , Vitis/crecimiento & desarrollo , Aspergillus/metabolismo , Resistencia a la Enfermedad , Contaminación de Alimentos/análisis , Frutas/clasificación , Frutas/crecimiento & desarrollo , Frutas/microbiología , Ocratoxinas/metabolismo , Agricultura Orgánica , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Vitis/química , Vitis/clasificación , Vitis/microbiología
9.
Microbiol Res ; 238: 126515, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32531696

RESUMEN

Cyclic lipopeptides (CLPs) from Bacillus strains have demonstrated a wide range of bioactivities making them interesting candidates for different applications in the pharmaceutical, food and biotechnological industries. Genome sequencing, together with phylogenetic analysis of the Bacillus sp. P34, isolated from a freshwater fish gut, showed that the bacterial strain belongs to the Bacillus velezensis group. In silico investigation of metabolic gene clusters of nonribosomal peptide synthetases (NRPS) revealed the genetic elements associated with the synthesis of surfactin, fengycin and iturin family component bacillomycin. Further, an assay was conducted to investigate the production of CLPs in the presence of heat inactivated bacterial cultures or fungal spores. Maximum fengycin concentration was observed at 24 h (2300-2700 mg/mL), while maximum iturin amounts were detected at 48 h (250 mg/mL) in the presence of heat-inactivated spores of Aspergillus niger. Heat-inactivated cells of Listeria monocytogenes caused a reduction of both fengycin and iturin amounts. The production of fengycins A and B and the iturin family component bacillomycin L was confirmed by mass spectrometry analyses. This study reinforces the potential of B. velezensis P34 as a valuable strain for biotechnological production of CLPs recognized as important antimicrobial substances.


Asunto(s)
Bacillus/genética , Bacillus/metabolismo , Lipopéptidos/biosíntesis , Péptidos Cíclicos/biosíntesis , Animales , Aspergillus niger , Bacillus/aislamiento & purificación , Hibridación Genómica Comparativa , Peces/microbiología , Genoma Bacteriano , Listeria monocytogenes , Anotación de Secuencia Molecular , Filogenia , Staphylococcus aureus , Secuenciación Completa del Genoma
10.
Food Res Int ; 126: 108687, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31732020

RESUMEN

Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.


Asunto(s)
Antioxidantes/análisis , Aspergillus/metabolismo , Ocratoxinas/análisis , Vitis , Vino , Antioxidantes/metabolismo , Ocratoxinas/metabolismo , Odorantes , Vitis/química , Vitis/microbiología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Vino/análisis , Vino/microbiología
11.
Food Sci. Technol (SBCTA, Impr.) ; 37(spe): 24-27, Dec. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892228

RESUMEN

Abstract Aspergillus westerdijkiae is one of the most important spoilage and toxigenic fungi contaminating coffee beans and may produce ochratoxin A (OTA), a mycotoxin that characterize a health risk to the coffee consumers. Biological control strategies can be used for prevention of fungal invasion and decrease mycotoxin exposure. The aims of this study were to evaluate the in vitro effect of three Bacillus sp. biocontrol candidates on A. westerdijkiae mycelial growth, spore counts and OTA production. A green-coffee based medium was inoculated with A. westerdijkiae and Bacillus spp. (B. safensis RF69, B. amyloliquefaciens RP103 and B. subtilis RP242) and after incubation, the fungal growth, sporulation and mycotoxin production was evaluated. Mycelial growth rate was reduced in a range between 76-95% and conidial production was also significantly decreased. All isolates were capable of reducing OTA production in a range between 62-96%. The results showed that the biocontrol candidates may be an effective control method for A. westerdijkiae and OTA in coffee.

12.
Food Chem Toxicol ; 109(Pt 1): 237-244, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28888733

RESUMEN

The goals of this study were (i) to verify the effect of steam extraction used in juice production and the stages of vinification on the ochratoxin A (OTA) levels found in grapes naturally contaminated, and (ii) evaluate the risk of exposure to this toxin when the daily consumption of juice and wine is followed to prevent cardiovascular disease. OTA-producing fungi were isolated from Cabernet Sauvignon, Moscato Itálico and Concord grapes harvested from the same vineyard and intended to produce red wine, white wine and juice, respectively. The highest levels of this toxin were found in the Concord grapes used for juice production. Although greater reduction in OTA levels occurred during juice production (73%) compared to winemaking (66 and 44%, for red and white, respectively), the estimated OTA exposure through juice was higher than the tolerable intake established for this toxin by JECFA. The risk associated with juice consumption, rather than wine, can be explained by (i) higher OTA levels found in Concord must than those of Cabernet and Moscato, indicating that Concord grapes appear to be more susceptible to OTA production by toxigenic fungi; and (ii) the daily recommended juice consumption is higher than those proposed to red wine.


Asunto(s)
Contaminación de Alimentos/análisis , Jugos de Frutas y Vegetales/análisis , Ocratoxinas/análisis , Vino/análisis , Cromatografía Líquida de Alta Presión , Seguridad de Productos para el Consumidor , Humanos , Ocratoxinas/aislamiento & purificación , Ocratoxinas/metabolismo , Medición de Riesgo , Vitis/química , Vitis/microbiología
13.
Int J Food Microbiol ; 238: 23-32, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27589021

RESUMEN

Bacillus strains isolated from the aquatic environment of the Brazilian Amazon region were tested for their activity against mycotoxigenic fungi. All tested bacteria showed antifungal activity, inhibiting at least 7 indicator fungi. Four Bacillus strains showing promising antifungal results were subsequently evaluated for their activity in reducing mycelial growth rate, sporulation, spore germination percentage, and mycotoxin production. Bacillus sp. P1 and Bacillus sp. P11 had a remarkable antifungal effect on toxigenic fungi. Washed bacterial cell suspension of strains P1 and P11 (107CFU/ml) reduced by >70% the fungal colony diameters, including a complete inhibition of ochratoxin A (OTA) producing Aspergillus spp. Significant reduction of growth rate, sporulation and spore germination were also observed. The bacteria influenced the production of mycotoxins, causing a reduction around 99 and 97% in AFB1 and OTA concentration, respectively. Chromatographic analysis revealed the presence of lipopeptides (iturin A and surfactin isomers) in butanol extracts of cell-free supernatants and cell pellets of strains P1 and P11. Furthermore, antifungal activity of these extracts was confirmed against A. flavus A12 and A. carbonarius ITAL293, producers of AFB1 and OTA, respectively. These bacterial strains could be promising biocontrol agents against toxigenic fungi.


Asunto(s)
Bacillus/fisiología , Hongos/fisiología , Intestinos/microbiología , Interacciones Microbianas/fisiología , Micotoxinas/metabolismo , Animales , Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Aspergillus/fisiología , Bacillus/aislamiento & purificación , Brasil , Peces/microbiología , Hongos/efectos de los fármacos , Lipopéptidos/análisis , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Ocratoxinas/metabolismo
14.
Food Chem Toxicol ; 89: 85-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807886

RESUMEN

The objective of this research was to estimate the processing effect on mycotoxins levels and the exposure to zearalenone (ZEA), ochratoxin (OTA) and aflatoxin B1 (AFB1) through the consumption of pasta and bakery products. The higher reduction percentage of mycotoxins was observed in cake production (95, 90 and 70% for ZEA, OTA and AFB1, respectively). Bread and biscuit showed similar reduction in mycotoxins levels (89 and 90% for ZEA; 80 and 85% for OTA; 36 and 40% for AFB1, respectively). The lower reduction in the levels of mycotoxins has been observed for pasta (75, 65 and 10% for ZEA, OTA and AFB1, respectively). The consumption of these products could represent 12.6% of the maximum tolerable daily intake of ZEA and 30.5% of the tolerable weekly intake of OTA. The margin of exposure value related to the exposure to AFB1 was 24.6. The exposure to ZEA and OTA through the consumption of bakery products and pasta would not represent risk for consumer health, (although conjugated forms were not determined). However, the exposure to AFB1 represents a risk (even without considering the AFB1-conjugated forms).


Asunto(s)
Aflatoxina B1/toxicidad , Exposición a Riesgos Ambientales , Contaminación de Alimentos , Manipulación de Alimentos , Micotoxinas/toxicidad , Ocratoxinas/toxicidad , Zearalenona/toxicidad , Humanos , Estándares de Referencia , Triticum
15.
Eur J Pharm Sci ; 84: 70-6, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26775870

RESUMEN

Nanotechnology strategies have been used for delivery and controlled release of antimicrobial drugs. Electrospun nanofibers can be versatile vehicles to incorporate antimicrobials. In this work, poly-ε-caprolactone nanofibers functionalized with ketoconazole were produced by electrospinning and tested against filamentous fungi. Ketoconazole-free nanofibers were produced as controls. Functionalized nanofibers showed antifungal activity against Aspergillus flavus, A. carbonarius, A. niger, Aspergillus sp. A29, Fusarium oxysporum and Penicillium citrinum by agar diffusion test. Inhibitory zones ranging from 6 to 44mm were observed, this larger inhibition was against A. flavus. The nanofibers were incubated in different simulant solutions to evaluate the ketoconazole release, which was only detected in the solution containing 5% (v/v) Tween 20. Electron microscopy images showed the nanofibers with ketoconazole presented mean diameters of 526nm, and the degradation of the nanofiber structures could be observed by electron microscopy after incubation in simulant solution. Infrared and thermal analyses indicated that ketoconazole was dispersed without chemical interactions with the polycaprolactone matrix. These results suggest that polycaprolactone nanofibers incorporating ketoconazole may be an interesting alternative to control pathogenic fungi.


Asunto(s)
Antifúngicos/administración & dosificación , Aspergillus/efectos de los fármacos , Fusarium/efectos de los fármacos , Cetoconazol/administración & dosificación , Nanofibras/administración & dosificación , Penicillium/efectos de los fármacos , Antifúngicos/química , Liberación de Fármacos , Cetoconazol/química , Nanofibras/química , Nanotecnología/métodos , Poliésteres/administración & dosificación , Poliésteres/química , Tecnología Farmacéutica/métodos
16.
Electron. j. biotechnol ; 13(2): 3-4, Mar. 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-567081

RESUMEN

In recent years the incorporation of probiotic bacteria into foods has received increasing scientific interest for health promotion and disease prevention. The safety and probiotic properties of Zymomonas mobilis CP4 (UFPEDA-202) was studied in a Wistar rat model fed the 10(9) colony forming units (cfu)/mL-1 of the assayed strain for 30 days. No abnormal clinical signs were noted in the group receiving viable cells of Z. mobilis and water (control) during the period of the experiment. There were no significant difference (p > 0.05) in feed intake and weight gain among mice fed the Z. mobilis in comparison to the control group. No bacteria were found in blood, liver and spleen of any animals. Mice receiving Z. mobilis showed significantly differences (p < 0.05) in total and differential leucocytes count, excepting for neutrophils, after the experimental period. Otherwise, it was not found in control group. Histological examination showed that feeding mice with Z. mobilis caused no signs of adverse effects on gut, liver and spleen. From these results, Z. mobilis CP4 (UFEPEDA-202) is likely to be nonpathogenic and safe for consumption, and could have a slight modulating effect on immunological performance in mice.


Asunto(s)
Animales , Ratas , Probióticos , Zymomonas/fisiología , Traslocación Bacteriana , Microbiología de Alimentos , Abastecimiento de Alimentos , Recuento de Leucocitos , Ratas Wistar , Sistema Digestivo/inmunología , Sistema Digestivo/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...