Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(2): e14391, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400769

RESUMEN

Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2 , across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favour warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.


Asunto(s)
Ecosistema , Plantas , Cambio Climático , Madera , Temperatura
2.
Ecology ; 105(3): e4247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38267011

RESUMEN

Plant neighbors in arid environments can ameliorate abiotic stress by reducing insolation, but they also attract herbivores and pathogens, especially when neighbors are close relatives that share similar antagonists. Plants' metabolic profiles provide a chemical fingerprint of the physiological processes behind plant responses to different environmental stresses. For example, abscisic acid and proline, mainly involved in stomatal closure and osmotic adjustment, can induce plant responses to abiotic stress, while jasmonic acid and salicylic acid primarily regulate plant defense to herbivory or pathogens. Neighbor plants can generate contrasting ecological contexts, modulating plant responses to abiotic and biotic stresses. We hypothesize that plant metabolic profile is modulated by its neighbors in a vegetation patch, expecting a higher investment in metabolites related to biotic-stress tolerance (i.e., herbivory or pathogens) when growing associated with other plants, especially to phylogenetically close relatives, compared to plants growing alone. We show that plants from five species growing with neighbors invest more in biotic-stress tolerance while their conspecifics, growing alone, invest more in abiotic-stress tolerance. This tendency in plants' metabolic profiles was not affected by the phylogenetic diversity of their neighborhood. Linking physiological snapshots with community processes can contribute to elucidating metabolic profiles derived from plant-plant interactions.


Asunto(s)
Ecosistema , Plantas , Filogenia , Plantas/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico
3.
ISME J ; 17(12): 2135-2139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857708

RESUMEN

Competition can lead to the exclusion of bacterial taxa when there is a transitive relationship among competitors with a hierarchy of competitive success. However, competition may not prevent bacterial coexistence if competitors form intransitive loops, in which none is able to outcompete all the rest. Both transitive and intransitive competition have been demonstrated in bacterial model systems. However, in natural soil microbial assemblages competition is typically understood as a dominance relationship leading to the exclusion of weak competitors. Here, we argue that transitive and intransitive interactions concurrently determine the structure of soil microbial communities. We explain why pairwise interactions cannot depict competition correctly in complex communities, and propose an alternative through the detection of strongly connected components (SCCs) in microbial networks. We finally analyse the existence of SCCs in soil bacterial communities in two Mediterranean ecosystems, for illustrative purposes only (rather than with the aim of providing a methodological tool) due to current limitations, and discuss future avenues to experimentally test the existence of SCCs in nature.


Asunto(s)
Ecosistema , Suelo , Modelos Biológicos , Bacterias/genética
4.
Ecology ; 104(2): e3923, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36428233

RESUMEN

Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications.


Asunto(s)
Ecosistema , Tracheophyta , Humanos , Plantas , Evolución Biológica
5.
Ecology ; 104(2): e3961, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36545892

RESUMEN

Facilitative interactions bind community species in intricate ecological networks, preserving species that would otherwise be lost. The traditional understanding of ecological networks as static components of biological communities overlooks the fact that species interactions in a network can fluctuate. Analyzing the patterns that cause those shifts can reveal the principles that govern the identity of pairwise interactions and whether they are predictable based on the traits of the interacting species and the local environmental contexts in which they occur. Here we explore how abiotic stress and phylogenetic and functional affinities constrain those shifts. Specifically, we hypothesize that rewiring the facilitative interactions is more limited in stressful than in mild environments. We present evidence of a distinct pattern in the rewiring of facilitation-driven communities at different stress levels. In highly stressful environments with a firm reliance on facilitation, rewiring is limited to growing beneath nurse species with traits to overcome harsh stressful conditions. However, when environments are milder, rewiring is more flexible, although it is still constrained to nurses that are close relatives. Understanding the ability of species to rewire their interactions is crucial for predicting how communities may respond to the unprecedented rate of perturbations on Earth.


Asunto(s)
Biota , Plantas , Humanos , Filogenia , Fenotipo
6.
Ecology ; 103(12): e3833, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871447

RESUMEN

While biodiversity is expected to enhance multiple ecosystem functions (EFs), the different roles of multiple biodiversity dimensions remain difficult to disentangle without carefully designed experiments. We sowed plant communities with independent levels of functional (FD) and phylogenetic diversities (PD), combined with different levels of fertilization, to investigate their direct and indirect roles on multiple EFs, including plant-related EFs (plant biomass productivity, litter decomposability), soil fertility (organic carbon and nutrient pool variables), soil microbial activity (respiration and nutrient cycling), and an overall multifunctionality. We expected an increase in most EFs in communities with higher values of FD and/or PD via complementarity effects, but also the dominant plant types (using community weighted mean, CWM, independent of FD and PD) via selection effects on several EFs. The results showed strong direct effects of different dimensions of plant functional structure parameters on plant-related EFs, through either CWM or FD, with weak effects of PD. Fertilization had significant effects on one soil microbial activity and indirect effects on the other variables via changes in soil abiotic properties. Dominant plant types and FD showed only indirect effects on soil microbial activity, through litter decomposition and soil abiotic properties, highlighting the importance of cascading effects. This study shows the relevance of complementary dimensions of biodiversity for assessing both direct and cascading effects on multiple EFs.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Filogenia , Plantas , Biodiversidad , Microbiología del Suelo
7.
Ecol Lett ; 25(6): 1580-1593, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460586

RESUMEN

Although plant-plant interactions (i.e. competition and facilitation) have long been recognised as key drivers of plant community composition and dynamics, their global patterns and relationships with climate have remained unclear. Here, we assembled a global database of 10,502 pairs of empirical data from the literature to address the patterns of and climatic effects on the net outcome of plant interactions in natural communities. We found that plant interactions varied among plant performance indicators, interaction types and biomes, yet competition occurred more frequently than facilitation in plant communities worldwide. Unexpectedly, plant interactions showed weak latitudinal pattern and were weakly related to climate. Our study provides a global comprehensive overview of plant interactions, highlighting competition as a fundamental mechanism structuring plant communities worldwide. We suggest that further investigations should focus more on local factors (e.g. microclimate, soil and disturbance) than on macroclimate to identify key environmental determinants of interactions in plant communities.


Asunto(s)
Ecosistema , Plantas , Suelo
8.
Ecol Lett ; 25(2): 320-329, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34775664

RESUMEN

Seed dispersal benefits plants and frugivores, and potentially drives co-evolution, with consequences to diversification evidenced for, e.g., primates. Evidence for macro-coevolutionary patterns in multi-specific, plant-animal mutualisms is scarce, and the mechanisms driving them remain unexplored. We tested for phylogenetic congruences in primate-plant interactions and showed strong co-phylogenetic signals across Neotropical forests, suggesting that both primates and plants share evolutionary history. Phylogenetic congruence between Platyrrhini and Angiosperms was driven by the most generalist primates, modulated by their functional traits, interacting with a wide-range of Angiosperms. Consistently similar eco-evolutionary dynamics seem to be operating irrespective of local assemblages, since co-phylogenetic signal emerged independently across three Neotropical regions. Our analysis supports the idea that macroevolutionary, coevolved patterns among interacting mutualistic partners are driven by super-generalist taxa. Trait convergence among multiple partners within multi-specific assemblages appears as a mechanism favouring these likely coevolved outcomes.


Asunto(s)
Primates , Dispersión de Semillas , Animales , Bosques , Filogenia , Plantas/genética , Simbiosis
9.
Proc Biol Sci ; 288(1955): 20211080, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34284635

RESUMEN

Mammals kill both conspecific infants and adults. Whereas infanticide has been profusely studied, the killing of non-infants (adulticide) has seldom attracted the attention of researchers. Mammals kill conspecific adults by at least four, non-exclusive reasons: during intrasexual aggression for mating opportunities, to defend valuable resources, to protect their progeny and to prey upon conspecifics. In this study, we test which reason is most likely to explain male and female adulticide in mammals. For this, we recorded the presence of adulticide, the ecological and behavioural traits, and the phylogenetic relationship for more than 1000 species. Adulticide has been recorded in over 350 species from the most important Mammalian clades. Male adulticide was phylogenetically correlated with the presence of size dimorphism and intrasexually selected weapons. Female adulticide was phylogenetically associated with the occurrence of infanticide. These results indicate that the evolutionary pathways underlying the evolution of adulticide differ between sexes in mammals. Whereas males commit adulticide to increase breeding opportunities and to compete with other males for mating, females commit adulticide mainly to defend offspring from infanticidal conspecifics.


Asunto(s)
Agresión , Mamíferos , Animales , Femenino , Humanos , Masculino , Filogenia , Reproducción
10.
Trends Ecol Evol ; 36(9): 822-836, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34088543

RESUMEN

Under global change, how biological diversity and ecosystem services are maintained in time is a fundamental question. Ecologists have long argued about multiple mechanisms by which local biodiversity might control the temporal stability of ecosystem properties. Accumulating theories and empirical evidence suggest that, together with different population and community parameters, these mechanisms largely operate through differences in functional traits among organisms. We review potential trait-stability mechanisms together with underlying tests and associated metrics. We identify various trait-based components, each accounting for different stability mechanisms, that contribute to buffering, or propagating, the effect of environmental fluctuations on ecosystem functioning. This comprehensive picture, obtained by combining different puzzle pieces of trait-stability effects, will guide future empirical and modeling investigations.


Asunto(s)
Biodiversidad , Ecosistema , Fenotipo
11.
Environ Microbiol ; 23(1): 239-251, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33118311

RESUMEN

Denitrification causes nitrogen losses from terrestrial ecosystems. The magnitude of nitrogen loss depends on the prevalence of denitrifiers, which show ecological differences if they harbour nirS or nirK genes encoding nitrite reductases with the same biological function. Thus, it is relevant to understand the mechanisms of co-existence of denitrifiers, including their response to environmental filters and competition due to niche similarities. We propose a framework to analyse the co-existence of denitrifiers across multiple assemblages by using nir gene-based co-occurrence networks. We applied it in Mediterranean soils before and during 1 year after an experimental fire. Burning did not modify nir community structure, but significantly impacted co-occurrence patterns. Bacteria with the same nir co-occurred in space, and those with different nir excluded each other, reflecting niche requirements: nirS abundance responded to nitrate and salinity, whereas nirK to iron content. Prior to fire, mutual exclusion between bacteria with the same nir suggested competition due to niche similarities. Burning provoked an immediate rise in mineral nitrogen and erased the signals of competition, which emerged again within days as nir abundances peaked. nir co-occurrence patterns can help infer the assembly mechanisms of denitrifying communities, which control nitrogen losses in the face of ecological disturbance.


Asunto(s)
Bacterias/metabolismo , Desnitrificación/fisiología , Incendios , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Bacterias/genética , Desnitrificación/genética , Ecosistema , Nitratos/metabolismo , Nitrógeno/metabolismo , Salinidad , Suelo/química , Microbiología del Suelo
12.
Ecol Lett ; 24(3): 509-519, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33381899

RESUMEN

Identifying the plant traits that determine the outcome of facilitation interactions is essential to understand how communities are assembled and can be restored. Plant facilitation networks are phylogenetically structured but which traits are behind such a pattern is unknown. We sampled plant interactions in stressful ecosystems from south-eastern Spain to build seedling and adult facilitation networks. We collected 20 morphological and ecophysiological traits for 151 species involved in interactions between 879 nurse individuals benefiting 24 584 seedlings and adults. We detected a significant phenotypic signal in the seedling facilitation network that was maintained in the adult network, whereby functionally similar nurses tended to facilitate functionally similar species whose traits differ from those of their nurses. We provide empirical evidence to support a long-lasting theoretical postulate stating that facilitation networks are phenotypically structured. Trait matching through which nurse and facilitated species avoid phenotypic overlap, and consequently competition, is the main linkage rule shaping plant facilitation networks.


Asunto(s)
Ecosistema , Plantas , Humanos , Fenotipo , Plantones , España
13.
Sci Rep ; 10(1): 19073, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149190

RESUMEN

Progressive evolution, or the tendency towards increasing complexity, is a controversial issue in biology, which resolution entails a proper measurement of complexity. Genomes are the best entities to address this challenge, as they encode the historical information of a species' biotic and environmental interactions. As a case study, we have measured genome sequence complexity in the ancient phylum Cyanobacteria. To arrive at an appropriate measure of genome sequence complexity, we have chosen metrics that do not decipher biological functionality but that show strong phylogenetic signal. Using a ridge regression of those metrics against root-to-tip distance, we detected positive trends towards higher complexity in three of them. Lastly, we applied three standard tests to detect if progressive evolution is passive or driven-the minimum, ancestor-descendant, and sub-clade tests. These results provide evidence for driven progressive evolution at the genome-level in the phylum Cyanobacteria.


Asunto(s)
Cianobacterias/genética , Evolución Molecular , Genoma Bacteriano , Cianobacterias/clasificación , Filogenia
14.
Mol Ecol ; 29(13): 2463-2476, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32500559

RESUMEN

Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) fungi, essential for ecosystem dynamics, might be shaped by recurrent fires. We tested how the structure and function of ECM fungal communities of Pinus pinaster and Pinus halepensis vary among populations subjected to high and low fire recurrence in Mediterranean ecosystems, and analysed the relative contribution of environmental (climate, soil properties) and tree-mediated (serotiny) factors. For both pines, local and regional ECM fungal diversity were lower in areas of high than low fire recurrence, although certain fungal species were favoured in the former. A general decline of ECM root-tip enzymatic activity for P. pinaster was associated with high fire recurrence, but not for P. halepensis. Fire recurrence and fire-related factors such as climate, soil properties or tree phenotype explained these results. In addition to the main influence of climate, the tree fire-adaptive trait serotiny recovered a great portion of the variation in structure and function of ECM fungal communities associated with fire recurrence. Edaphic conditions (especially pH, tightly linked to bedrock type) were an important driver shaping ECM fungal communities, but mainly at the local scale and probably independently of the fire recurrence. Our results show that ECM fungal community shifts are associated with fire recurrence in fire-prone dry Mediterranean forests, and reveal complex feedbacks among trees, mutualistic fungi and the surrounding environment in these ecosystems.


Asunto(s)
Incendios , Bosques , Micorrizas , Pinus/microbiología , Biodiversidad , Región Mediterránea , Micorrizas/clasificación , Árboles
15.
Mol Ecol Resour ; 19(6): 1552-1564, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31482665

RESUMEN

Co-occurrence network analysis based on amplicon sequences is increasingly used to study microbial communities. Patterns of co-existence or mutual exclusion between pairs of taxa are often interpreted as reflecting positive or negative biological interactions. However, other assembly processes can underlie these patterns, including species failure to reach distant areas (dispersal limitation) and tolerate local environmental conditions (habitat filtering). We provide a tool to quantify the relative contribution of community assembly processes to microbial co-occurrence patterns, which we applied to explore soil bacterial communities in two dry ecosystems. First, we sequenced a bacterial phylogenetic marker in soils collected across multiple plots. Second, we inferred co-occurrence networks to identify pairs of significantly associated taxa, either co-existing more (aggregated) or less often (segregated) than expected at random. Third, we assigned assembly processes to each pair: patterns explained based on spatial or environmental distance were ascribed to dispersal limitation (2%-4%) or habitat filtering (55%-77%), and the remaining to biological interactions. Finally, we calculated the phylogenetic distance between taxon pairs to test theoretical expectations on the linkages between phylogenetic patterns and assembly processes. Aggregated pairs were more closely related than segregated pairs. Furthermore, habitat-filtered aggregated pairs were closer relatives than those assigned to positive interactions, consistent with phylogenetic niche conservatism and cooperativism among distantly related taxa. Negative interactions resulted in equivocal phylogenetic signatures, probably because different competitive processes leave opposing signals. We show that microbial co-occurrence networks mainly reflect environmental tolerances and propose that incorporating measures of phylogenetic relatedness to networks might help elucidate ecologically meaningful patterns.


Asunto(s)
Bacterias/genética , Consorcios Microbianos/genética , Microbiota/genética , Algoritmos , Biodiversidad , Ecología/métodos , Ecosistema , Filogenia , Suelo , Microbiología del Suelo
16.
New Phytol ; 224(2): 928-935, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291473

RESUMEN

The tendency of closely related plant species to share natural enemies has been suggested to limit their co-occurrence and performance, but we lack a deep understanding on how mutualistic interactions such as the mycorrhizal symbiosis affect plant-plant interactions depending on the phylogenetic relatedness of the interacting plants. We hypothesise that the effect of the mycorrhizal symbiosis on plant-plant facilitative interactions depends on the phylogenetic distance between the nurse and facilitated plants. A recently published meta-analysis compiled the strength of plant facilitative interactions in the presence or absence (or reduced abundance) of mycorrhizal fungi. We use phylogenetically informed Bayesian linear models to test whether the effect size is influenced by the phylogenetic distance between the plant species involved in each plant facilitative interaction. Conspecific facilitative interactions are more strongly enhanced by mycorrhizal fungi than interactions between closely related species. In heterospecific interactions, the effect of the mycorrhizal symbiosis on plant facilitation increases with the phylogenetic distance between the nurse and facilitated plant species. Our result showing that the effect of mycorrhizal symbiosis on the facilitation interactions between plants depends on their phylogenetic relatedness provides new mechanisms to understand how facilitation is assembling ecological communities.


Asunto(s)
Micorrizas/fisiología , Plantas/genética , Simbiosis/fisiología , Especificidad del Huésped , Micorrizas/genética , Filogenia , Plantas/clasificación , Simbiosis/genética
17.
Sci Adv ; 5(6): eaav6699, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31223648

RESUMEN

Species on Earth are interconnected with each other through ecological interactions. Defaunation can erode those connections, yet we lack evolutionary predictions about the consequences of losing interactions in human-modified ecosystems. We quantified the fate of the evolutionary history of avian-seed dispersal interactions across tropical forest fragments by combining the evolutionary distinctness of the pairwise-partner species, a proxy to their unique functional features. Both large-seeded plant and large-bodied bird species showed the highest evolutionary distinctness. We estimate a loss of 3.5 to 4.7 × 104 million years of cumulative evolutionary history of interactions due to defaunation. Bird-driven local extinctions mainly erode the most evolutionarily distinct interactions. However, the persistence of less evolutionarily distinct bird species in defaunated areas exerts a phylogenetic rescue effect through seed dispersal of evolutionarily distinct plant species.


Asunto(s)
Aves/fisiología , Plantas/genética , Dispersión de Semillas/fisiología , Semillas/fisiología , Animales , Evolución Biológica , Ecosistema , Bosques , Humanos , Filogenia
18.
J Environ Manage ; 241: 284-292, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009816

RESUMEN

Plant species identity is assumed to be a major driver of belowground microbial diversity and composition. However, diagnosing which plant functional traits are responsible for shaping microbial communities remains elusive. Primary succession on barren metalliferous mining substrates was selected as the framework to study above-belowground interactions, and plant functional traits that lead the successional trajectories of soil bacterial communities were identified. The impact of the plant functional group (i.e. trees, shrubs, dwarf shrubs, perennial grasses), a trait integrating the life span and morphological structure, on the bacterial primary succession was monitored. Bacterial diversity and composition was estimated along plant size gradients including over 90 scattered patches ranging from seedlings to mature multispecific patches. Soil bacterial diversity was affected by heavy metals levels and increased towards higher resource availability underneath mature patches, with stress-tolerant heterotrophs and phototrophs being replaced by competitive heterotrophs. The plant functional group modulated these general patterns and shrubs had the greatest impact belowground by inducing the largest increase in soil fertility. Functional traits related to leaf decomposability and root architecture further determined the composition and structure of bacterial communities. These results underline the importance of plant functional traits in the assembly of soil bacterial communities, and can help guiding restoration of degraded lands.


Asunto(s)
Microbiología del Suelo , Suelo , Bacterias , Minería , Plantas
19.
ISME J ; 12(9): 2152-2162, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29880911

RESUMEN

The historical conditions under which bacterial lineages evolve determine their functional traits, and consequently their contribution to ecosystem functions (EFs). Under significant trait conservatism, which is common in prokaryotes, phylogeny may track the evolutionary history of species and predict their functionality. Productive communities can arise from: (i) the coexistence of functional, and therefore phylogenetically distant lineages, producing high EF rates at large phylogenetic diversity (PD); (ii) the dominance of productive lineages that outcompete other clades, generating high EF at low PD. Community composition will modulate the PD-EF relationship: The effects of anciently divergent lineages, whose deeply conserved functions determine the occupancy of major niches, may differ from that of recently divergent lineages showing adaptations to current conditions. We hypothesized that, in our model Mediterranean ecosystem, EF can be explained both by competitive superiority of ancient lineages and functional complementarity of recent lineages. To test this hypothesis, we sequenced a phylogenetic marker targeting bacteria across 28 soil plots and quantified EF related to microbial productivity, decomposition and nutrient cycling. Plots accumulating recently divergent lineages consistently showed higher EF levels that were slightly modified by the accumulation of ancient lineages. We discuss the assembly processes behind these phylogenetic-scale disparities and the final outcome in terms of ecosystem functioning.


Asunto(s)
Bacterias/clasificación , Ecosistema , Filogenia , Microbiología del Suelo
20.
Mol Ecol ; 27(13): 2896-2908, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29802784

RESUMEN

Fire alters the structure and composition of above- and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20-year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late-successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.


Asunto(s)
Ecosistema , Evolución Molecular , Incendios , Filogenia , Archaea/genética , Bacterias/genética , Biodiversidad , Hongos/genética , Plantas/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...