Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(21): 27087-27101, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752799

RESUMEN

An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.5OA, APCDs-1.0OA, and APCDs-1.5OA were synthesized. All three amphiphilic APCDs-OA conjugates show high affinity to DNA through electrostatic interactions. APCDs-0.5OA exhibit strong binding with small interfering RNA (siRNA). After being internalized by Human Embryonic Kidney (HEK 293) and osteosarcoma (U2OS) cells, they could distribute in both the cytoplasm and the nucleus. With APCDs-OA conjugates as gene delivery vehicles, plasmid DNA (pDNA) that encodes the gene for the green fluorescence protein (GFP) can be successfully delivered in both HEK 293 and U2OS cells. The GFP expression levels mediated by APCDs-0.5OA and APCDs-1.0OA are ten times greater than that of PEI in HEK 293 cells. Furthermore, APCDs-0.5OA show prominent siRNA transfection efficiency, which is proven by the significantly downregulated expression of FANCA and FANCD2 proteins upon delivery of FANCA siRNA and FANCD2 siRNA into U2OS cells. In conclusion, our work demonstrates that conjugation of CCDs with a lipid structure such as OA significantly improves the gene transfection efficiency, providing a new idea about the designation of nonviral carriers in gene delivery systems.


Asunto(s)
Carbono , ARN Interferente Pequeño , Transfección , Humanos , Células HEK293 , Carbono/química , Transfección/métodos , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Lípidos/química , Cationes/química , ADN/química , Puntos Cuánticos/química , Técnicas de Transferencia de Gen , Ácido Oléico/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Línea Celular Tumoral
2.
Fungal Biol ; 127(7-8): 1157-1179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495306

RESUMEN

For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.


Asunto(s)
Biología , Brasil , Francia , España , México
3.
J Colloid Interface Sci ; 637: 193-206, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36701865

RESUMEN

Nucleus targeting is tremendously important in cancer therapy. Cationic carbon dots (CCDs) are potential nanoparticles which might enter cells and penetrate nuclear membranes. Although some CCDs have been investigated in nucleus targeting and applied in nuclear imaging, the CCDs derived from drugs, that are able to target the nucleus, bind with DNA and inhibit the growth of cancer cells have not been reported. In this project, 1, 2, 4, 5-benzenetetramine (Y15, a focal adhesion kinase inhibitor) derived cationic carbon dots (Y15-CDs) were prepared via a hydrothermal approach utilizing Y15, folic acid and 1,2-ethylenediamine as precursors. Based on the structural, optical, and morphologic characterizations, Y15-CDs possess rich amine groups and nitrogen in structure, an excitation-dependent photoluminescence emission, and a small particle size of 2 to 4 nm. The DNA binding experiments conducted through agarose gel electrophoresis, UV-vis absorption, fluorescence emission, and circular dichroism spectroscopies, prove that Y15-CDs might bind with DNA via electrostatic interactions and partially intercalative binding modes. In addition, the cell imaging and cytotoxicity studies in human foreskin fibroblasts (HFF), prostate cancer (PC3) and osteosarcoma cells (U2OS) indicate the nucleus targeting and anticancer abilities of Y15-CDs. Most interestingly, Y15-CDs exhibit a higher cytotoxicity to cancer cells (PC3 and U2OS) than to normal cells (HFF), inferring that Y15-CDs might be potentially applied in cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Puntos Cuánticos , Masculino , Humanos , Puntos Cuánticos/química , Carbono/farmacología , Carbono/química , Nanopartículas/química , Espectrometría de Fluorescencia , ADN/metabolismo , Colorantes Fluorescentes/química
4.
Mol Biol Cell ; 32(20): ar14, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34288736

RESUMEN

The highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics at cell tips of Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 activation distributions to coexist in cell populations. For individual wild-type cells, however, Cdc42 distribution is initially asymmetrical and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different patterns of Cdc42 activation are possible in vivo, we examined S. pombe rga4∆ mutant cells, lacking the Cdc42 GTPase-activating protein (GAP) Rga4. We found that monopolar rga4∆ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4∆ daughter cells. Motivated by different hypotheses that can mathematically reproduce the unequal fate of daughter cells, we used genetic screening to identify mutants that alter the rga4∆ phenotype. We found that the unequal distribution of active Cdc42 GTPase is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP localization in maintaining consistent Cdc42 activation and growth patterns across generations.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Proteínas Activadoras de GTPasa/genética , Genoma Fúngico , Estudio de Asociación del Genoma Completo , Mutación , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteína de Unión al GTP cdc42/genética
5.
Mol Biol Cell ; 30(20): 2598-2616, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31390298

RESUMEN

Adaptation to the nutritional environment is critical for all cells. RAS GTPase is a highly conserved GTP-binding protein with crucial functions for cell growth and differentiation in response to environmental conditions. Here, we describe a novel mechanism connecting RAS GTPase to nutrient availability in fission yeast. We report that the conserved NDR/LATS kinase Orb6 responds to nutritional cues and regulates Ras1 GTPase activity. Orb6 increases the protein levels of an Ras1 GTPase activator, the guanine nucleotide exchange factor Efc25, by phosphorylating Sts5, a protein bound to efc25 mRNA. By manipulating the extent of Orb6-mediated Sts5 assembly into RNP granules, we can modulate Efc25 protein levels, Ras1 GTPase activity, and, as a result, cell growth and cell survival. Thus, we conclude that the Orb6-Sts5-Ras1 regulatory axis plays a crucial role in promoting cell adaptation, balancing the opposing demands of promoting cell growth and extending chronological lifespan.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas ras/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas ras/genética
6.
Elife ; 52016 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-27474797

RESUMEN

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Microscopía Fluorescente , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
Mol Biol Cell ; 26(19): 3520-34, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26246599

RESUMEN

Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24-Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Forma de la Célula/fisiología , Canales de Cloruro/genética , Citoesqueleto/metabolismo , GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microtúbulos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Biochem Soc Trans ; 41(6): 1745-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256285

RESUMEN

Cell polarization is fundamental to many cellular processes, including cell differentiation, cell motility and cell fate determination. A key regulatory enzyme in the control of cell morphogenesis is the conserved Rho GTPase Cdc42, which breaks symmetry via self-amplifying positive-feedback mechanisms. Additional mechanisms of control, including competition between different sites of polarized cell growth and time-delayed negative feedback, define a cellular-level system that promotes Cdc42 oscillatory dynamics and modulates activated Cdc42 intracellular distribution.


Asunto(s)
Polaridad Celular , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
9.
Science ; 337(6091): 239-43, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22604726

RESUMEN

Cells promote polarized growth by activation of Rho-family protein Cdc42 at the cell membrane. We combined experiments and modeling to study bipolar growth initiation in fission yeast. Concentrations of a fluorescent marker for active Cdc42, Cdc42 protein, Cdc42-activator Scd1, and scaffold protein Scd2 exhibited anticorrelated fluctuations and oscillations with a 5-minute average period at polarized cell tips. These dynamics indicate competition for active Cdc42 or its regulators and the presence of positive and delayed negative feedbacks. Cdc42 oscillations and spatial distribution were sensitive to the amounts of Cdc42-activator Gef1 and to the activity of Cdc42-dependent kinase Pak1, a negative regulator. Feedbacks regulating Cdc42 oscillations and spatial self-organization appear to provide a flexible mechanism for fission yeast cells to explore polarization states and to control their morphology.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/crecimiento & desarrollo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Mutación , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Quinasas p21 Activadas/metabolismo
10.
Methods Cell Biol ; 97: 203-21, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20719273

RESUMEN

The microtubule cytoskeleton has an important role in the control of mitochondrial distribution in higher eukaryotes. In humans, defects in axonal mitochondrial transport are linked to neurodegenerative diseases. This chapter highlights fission yeast Schizosaccharomyces pombe as a powerful genetic model system for the study of microtubule-dependent mitochondrial movement, dynamics and inheritance.


Asunto(s)
Microtúbulos/fisiología , Mitocondrias/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Fraccionamiento Celular/métodos , Tomografía con Microscopio Electrónico/métodos , Humanos , Microtúbulos/metabolismo , Mitocondrias/química , Mitocondrias/fisiología , Movimiento/fisiología , Coloración y Etiquetado/métodos , Distribución Tisular
11.
Curr Biol ; 19(15): 1314-9, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19646873

RESUMEN

The conserved NDR kinase regulates cell morphogenesis and polarized cell growth in different eukaryotic cells ranging from yeast to neurons. Although studies have unraveled the mechanism of regulation of NDR kinase activity, the mechanism of morphology control by NDR and the effectors that mediate NDR function are unknown. Via a chemical genetic approach, we show that the fission yeast NDR homolog, Orb6 kinase, maintains polarized cell growth at the cell tips by spatially regulating the localization of Cdc42 GTPase, a key morphology regulator. Loss of Orb6 kinase activity leads to the recruitment of Cdc42 GTPase and the Cdc42-dependent formin For3, normally found only at the cell tips, to the cell sides. Furthermore, we show that loss of Orb6 kinase activity leads to ectopic lateral localization of the Cdc42 guanine nucleotide exchange factor (GEF) Gef1, but not of the other Cdc42 GEF, Scd1. Consistent with these observations, gef1 deletion suppresses the increased cell diameter phenotype of orb6 mutants. In contrast, the microtubule cytoskeleton and the localization of the microtubule-dependent polarity markers Tea1 and Tea4 are not altered by loss of Orb6 kinase activity. Our findings indicate that the conserved NDR kinase Orb6 regulates cell polarity by spatially restricting the localization and activity of Cdc42 GTPase.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Aumento de la Célula , Polaridad Celular , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/metabolismo , Forminas , Microscopía Fluorescente , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Methods Mol Biol ; 457: 113-24, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19066022

RESUMEN

Mitochondrial biogenesis requires the contribution of two genomes and of two compartmentalized protein synthesis systems (nuclear and mitochondrial). Mitochondrial protein synthesis is unique on many respects, including the use of a genetic code with deviations from the universal code, the use of a restricted number of transfer RNAs, and because of the large number of nuclear encoded factors involved in assembly of the mitochondrial biosynthetic apparatus. The mitochondrial biosynthetic apparatus is involved in the actual synthesis of a handful of proteins encoded in the mitochondrial DNA. The budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe are excellent models to identify and study factors required for mitochondrial translation. For that purpose, in vivo mitochondrial protein synthesis, following the incorporation of a radiolabeled precursor into the newly synthesized mitochondrial encoded products, is a relatively simple technique that has been extensively used. Although variations of this technique are well established for studies in S. cerevisiae, they have not been optimized yet for studies in S. pombe. In this chapter, we present an easy, fast and reliable method to in vivo radiolabel mitochondrial translation products from this fission yeast.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/análisis , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Coloración y Etiquetado/métodos , ADN Mitocondrial/metabolismo , Electroforesis en Gel de Poliacrilamida , Cinética , Proteínas Mitocondriales/aislamiento & purificación
13.
Eukaryot Cell ; 7(4): 619-29, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18245278

RESUMEN

Maintenance of cell morphology is essential for normal cell function. For eukaryotic cells, a growing body of recent evidence highlights a close interdependence between mitochondrial function, the cytoskeleton, and cell cycle control mechanisms; however, the molecular details of this interconnection are still not completely understood. We have identified a novel protein, Bot1p, in the fission yeast Schizosaccharomyces pombe. The bot1 gene is essential for cell viability. bot1Delta mutant cells expressing lower levels of Bot1p display altered cell size and cell morphology and a disrupted actin cytoskeleton. Bot1p localizes to the mitochondria in live cells and cofractionates with purified mitochondrial ribosomes. Reduced levels of Bot1p lead to mitochondrial fragmentation, decreased mitochondrial protein translation, and a corresponding decrease in cell respiration. Overexpression of Bot1p results in cell cycle delay, with increased cell size and cell length and enhanced cell respiration rate. Our results show that Bot1p has a novel function in the control of cell respiration by acting on the mitochondrial protein synthesis machinery. Our observations also indicate that in fission yeast, alterations of mitochondrial function are linked to changes in cell cycle and cell morphology control mechanisms.


Asunto(s)
Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Secuencia de Aminoácidos , Viabilidad Microbiana , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Alineación de Secuencia
14.
Mol Biol Cell ; 18(6): 2090-101, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17377067

RESUMEN

Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4 Delta cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a "corset" pattern, and to the nongrowing cell tips. Additionally, rga4 Delta cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Forma de la Célula , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Actinas/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Citoesqueleto/metabolismo , Forminas , Proteínas Activadoras de GTPasa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
15.
EMBO J ; 24(17): 3012-25, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16096637

RESUMEN

Cell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity. Here we show that the conserved proteins, MO25-like Pmo25, GC kinase Nak1, Mor2, and Orb6, constitute a morphogenesis network that is important for polarity control and cell separation. Intriguingly, Pmo25 was localized at the mitotic spindle pole bodies (SPBs) and then underwent translocation to the dividing medial region upon cytokinesis. Pmo25 formed a complex with Nak1 and was required for both the localization and kinase activity of Nak1. Pmo25 and Nak1 in turn were essential for Orb6 kinase activity. Further, the Pmo25 localization at the SPBs and the Nak1-Orb6 kinase activities during interphase were under the control of the Cdc7 and Sid1 kinases in the septation initiation network (SIN), suggesting a functional linkage between SIN and the network for cell morphogenesis/separation following cytokinesis.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Secuencia Conservada , Proteínas de Drosophila/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microtúbulos/fisiología , Morfogénesis , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
16.
J Cell Biol ; 165(5): 697-707, 2004 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15184402

RESUMEN

The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end-binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3Deltabud6Deltatea1Delta triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/ultraestructura , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , División Celular/genética , Forminas , Sustancias Macromoleculares , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Modelos Moleculares , Mutación/genética , Proteínas de Neoplasias , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética
17.
J Cell Sci ; 117(Pt 6): 967-74, 2004 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-14762117

RESUMEN

We have cloned a fission yeast (Schizosaccharomyces pombe) homologue of Ini, a novel RING-finger-like protein recently identified in rat that interacts with the connexin43 (cx43) promoter and might be important for the response of the cx43 gene to estrogen. S. pombe cells deleted for ini1(+) fail to form colonies and arrest with an elongated cell phenotype, indicating a cell cycle block. Cell cycle arrest is dependent on expression of Wee1, but not Rad3, suggesting that it occurs independently of the DNA damage checkpoint control. Analysis of mRNA intermediates in cells depleted for Ini1 demonstrates that Ini1 is required for pre-mRNA splicing. We observe an accumulation of pre-mRNA for six of seven genes analysed, suggesting that Ini1 is required for general splicing activity. Interestingly, loss of Ini1 results in cell death that is partially suppressed by elimination of the Wee1 kinase. Therefore, Wee1 might promote cell death in the absence of Ini1.


Asunto(s)
Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Empalme del ARN/genética , Empalme del ARN/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/genética , Quinasa de Punto de Control 2 , Clonación Molecular , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Datos de Secuencia Molecular , Familia de Multigenes/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Análisis de Secuencia , Homología de Secuencia de Aminoácido
18.
J Biol Chem ; 278(32): 30074-82, 2003 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-12764130

RESUMEN

The p21-activated kinase (PAK) homolog, Shk1, is a critical component of a multifunctional Ras/Cdc42/PAK complex required for viability, polarized growth and cell shape, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Substrate targets of the Shk1 kinase have not previously been described. Here we show that the S. pombe cell polarity factor, Tea1, is directly phosphorylated by Shk1 in vitro. We demonstrate further that Tea1 is phosphorylated in S. pombe cells and that its level of phosphorylation is significantly reduced in cells defective in Shk1 function. Consistent with a role for Tea1 as a potential downstream effector of Shk1, we show that a tea1 null mutation rescues the Shk1 hyperactivity-induced lethal phenotype caused by loss of function of the essential Shk1 inhibitor, Skb15. All phenotypes associated with Skb15 loss, including defects in actin cytoskeletal organization, chromosome segregation, and cytokinesis, are suppressed by tea1 Delta, suggesting that Tea1 is a potential mediator of multiple Shk1 functions. S. pombe cells carrying a weak hypomorphic allele of shk1 together with a tea1 Delta mutation exhibit a cytokinesis defective phenotype that is significantly more severe than that observed in the respective single mutants, providing evidence that Shk1 and Tea1 cooperate to regulate cytokinesis. In addition, we show that S. pombe cells carrying the orb2-34 allele of shk1 exhibit a pattern of monopolar growth similar to that observed in tea1 Delta cells, suggesting that Shk1 and Tea1 may regulate one or more common processes involved in the regulation of polarized cell growth. Taken together, our results strongly implicate Tea1 as a potential substrate-effector of the Shk1 kinase.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Actinas/metabolismo , Alelos , División Celular , Pared Celular/metabolismo , Citoesqueleto/metabolismo , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/metabolismo , Mitosis , Modelos Biológicos , Mutación , Fenotipo , Fosforilación , Plásmidos/metabolismo , Pruebas de Precipitina , Factores de Tiempo , Quinasas p21 Activadas
19.
J Biol Chem ; 278(27): 25256-63, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12646585

RESUMEN

In the fission yeast Schizosaccharomyces pombe, proper establishment and maintenance of cell polarity require Orb6p, a highly conserved serine/threonine kinase involved in regulating both cell morphogenesis and cell cycle control. Orb6p localizes to the cell tips during interphase and to the cell septum during mitosis. To investigate the mechanisms involved in Orb6p function, we conducted a two-hybrid screen to identify proteins that interact with Orb6p. Using this approach, we identified Skb1p, a highly conserved protein methyltransferase that has been implicated previously in cell cycle control, in the coordination of cell cycle progression with morphological changes, and in hyperosmotic stress response. We found that Skb1p associates with Orb6p in S. pombe cells and that the two proteins interact directly in vitro. Loss of Skb1p exacerbates the phenotype of orb6 mutants, suggesting that Skb1p and Orb6p functionally interact in S. pombe cells. Our results suggest that Skb1p affects the intracellular localization of Orb6p and that loss of Skb1p leads to a redistribution of the Orb6p kinase away from the cell tips. Furthermore, we found that Orb6p kinase activity is strongly increased following exposure to salt shock, suggesting that Orb6p has a role in cell response to hyperosmotic stress. Previous studies have shown that Skb1p interacts with the fission yeast p21-activated kinase homologue Pak1p/Shk1p to regulate cell polarity and cell cycle progression. Our findings identify Orb6p as an additional target for Skb1p and suggest a novel function for Skb1p in the control of cell polarity by regulating the subcellular localization of Orb6p.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Polaridad Celular/fisiología , Metiltransferasas , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Schizosaccharomyces pombe , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Schizosaccharomyces , Transducción de Señal/genética
20.
J Cell Sci ; 116(Pt 1): 125-35, 2003 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12456722

RESUMEN

The molecular mechanisms that temporally and spatially coordinate cell morphogenesis with the cell cycle remain poorly understood. Here we describe the characterization of fission yeast Mob2p, a novel protein required for regulating cell polarity and cell cycle control. Deletion of mob2 is lethal and causes cells to become spherical, with depolarized actin and microtubule cytoskeletons. A decrease in Mob2p protein level results in a defect in the activation of bipolar growth. This phenotype is identical to that of mutants defective in the orb6 protein kinase gene, and we find that Mob2p physically interacts with Orb6p. In addition, overexpression of Mob2p, like that of Orb6p, results in a delay in the onset of mitosis. Mob2p localizes to the cell periphery and cytoplasm throughout the cell cycle and to the division site during late anaphase and telophase. Mob2p is unable to localize to the cell middle in mutants defective in actomyosin ring and septum formation. Our results suggest that Mob2p, along with Orb6p, is required for coordinating polarized cell growth during interphase with the onset of mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Polaridad Celular/genética , Fosfoproteínas/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Genes Letales/genética , Mitosis/genética , Mutación/genética , Miosinas/genética , Miosinas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...