Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 216: 102313, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760142

RESUMEN

We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.


Asunto(s)
Astrocitos , Vesículas Extracelulares , Adenosina Trifosfatasas , Astrocitos/metabolismo , Calcio/metabolismo , Vesículas Extracelulares/metabolismo , Homeostasis , Humanos , Neuronas/metabolismo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Intercambiador de Sodio-Calcio/metabolismo
2.
J Exp Clin Cancer Res ; 41(1): 53, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135603

RESUMEN

BACKGROUND: Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings. METHODS: We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos). RESULTS: We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity. CONCLUSIONS: These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.


Asunto(s)
Biguanidas/uso terapéutico , Canales de Cloruro/metabolismo , Glioblastoma/genética , Glioma/genética , Células Madre Neoplásicas/metabolismo , Biguanidas/farmacología , Línea Celular Tumoral , Glioblastoma/patología , Glioma/patología , Humanos
3.
J Pers Med ; 11(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34357102

RESUMEN

Identification of potential pathological biomarkers has proved to be essential for understanding complex and fatal diseases, such as cancer and neurodegenerative diseases. Ion channels are involved in the maintenance of cellular homeostasis. Moreover, loss of function and aberrant expression of ion channels and transporters have been linked to various cancers, and to neurodegeneration. The Chloride Intracellular Channel 1 (CLIC1), CLIC1 is a metamorphic protein belonging to a partially unexplored protein superfamily, the CLICs. In homeostatic conditions, CLIC1 protein is expressed in cells as a cytosolic monomer. In pathological states, CLIC1 is specifically expressed as transmembrane chloride channel. In the following review, we trace the involvement of CLIC1 protein functions in physiological and in pathological conditions and assess its functionally active isoform as a potential target for future therapeutic strategies.

4.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098256

RESUMEN

Pathologies that lead to neurodegeneration in the central nervous system (CNS) represent a major contemporary medical challenge. Neurodegenerative processes, like those that occur in Alzheimer's disease (AD) are progressive, and at the moment, they are unstoppable. Not only is an adequate therapy missing but diagnosis is also extremely complicated. The most reliable method is the measurement of beta amyloid and tau peptides concentration in the cerebrospinal fluid (CSF). However, collecting liquid samples from the CNS is an invasive procedure, thus it is not suitable for a large-scale prevention program. Ideally, blood testing is the most manageable and appropriate diagnostic procedure for a massive population screening. Recently, a few candidates, including proteins or microRNAs present in plasma/serum have been identified. The aim of the present work is to propose the chloride intracellular channel 1 (CLIC1) protein as a potential marker of neurodegenerative processes. CLIC1 protein accumulates in peripheral blood mononuclear cells (PBMCs), and increases drastically when the CNS is in a chronic inflammatory state. In AD patients, both immunolocalization and mRNA quantification are able to show the behavior of CLIC1 during a persistent inflammatory state of the CNS. In particular, confocal microscopy analysis and electrophysiological measurements highlight the significant presence of transmembrane CLIC1 (tmCLIC1) in PBMCs from AD patients. Recent investigations suggest that tmCLIC1 has a very specific role. This provides an opportunity to use blood tests and conventional technologies to discriminate between healthy individuals and patients with ongoing neurodegenerative processes.


Asunto(s)
Enfermedad de Alzheimer/sangre , Membrana Celular/metabolismo , Canales de Cloruro/sangre , Monocitos/metabolismo , Anciano , Enfermedad de Alzheimer/patología , Biomarcadores/sangre , Membrana Celular/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/patología
5.
Front Oncol ; 9: 135, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918838

RESUMEN

The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.

6.
Respir Res ; 19(1): 198, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290809

RESUMEN

BACKGROUND: Although pharmacological treatment has increased the average life expectancy of patients with cystic fibrosis, the median survival of females is shorter than that of males. In vitro and in vivo studies have shown that estrogens play a relevant role in the disease progression. The aim of this study was to investigate the effects of 17ß-estradiol and tamoxifen citrate (TMX) on calcium-activated chloride channel (CaCC) currents in human bronchial epithelial cells carrying the ΔPhe508-CFTR mutation both in homozygosis and in heterozygosis. METHODS: Perforated patch clamp experiments were performed on single cells of the immortalized cell lines CFBE and IB3-1. Gramicidin (10 or 20 µM) was added to the electrode solution to reach the whole cell configuration. The electrical stimulation protocol consisted of square voltages ranging from - 80 to + 80 mV, in steps of 20 mV and with a duration of 800 msec. RESULTS: The presence of 17ß-estradiol significantly reduced the CaCC currents, both in basal conditions and in the presence of ATP (100 µM). The addition of TMX (10 µM) completely restored the currents abolished by 17ß-estradiol, in basal conditions and after stimulation with ATP in both CFBE and IB3-1 cells. TMX had a strong, direct action on membrane current density, which significantly increased more than 4-fold in both cases. The membrane current stimulation produced by TMX was further enhanced by the addition of ATP. CFBE cells incubated for 24 h with 3 µM VX-809 (a CFTR corrector) and then acutely stimulated with VX-770 (a CFTR potentiator) in the presence of forskolin, showed an increase of chloride currents which were abolished by Inh-172. The chloride current density induced by TMX + ATP was, on average, greater than that obtained with VX-809 + VX-770 + forskolin. The currents elicited by TMX + ATP were abolished by the addition of NPPB, a CaCC inhibitor. The combined administration of TMX/ATP and VXs/FSK had an additional effect on chloride currents. CONCLUSIONS: Our results show that TMX restores CaCC currents inhibited by 17ß-estradiol and directly activates the transmembrane chloride currents potentiated by ATP, an effect which is mutation independent. The combined effect of TMX with current used treatments for cystic fibrosis could be of benefit to patients.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Moduladores de los Receptores de Estrógeno/farmacología , Mutación Puntual/genética , Mucosa Respiratoria/efectos de los fármacos , Tamoxifeno/farmacología , Línea Celular Transformada , Canales de Cloruro/fisiología , Estradiol/farmacología , Humanos , Mucosa Respiratoria/fisiología
7.
Front Pharmacol ; 9: 899, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186163

RESUMEN

The antidiabetic biguanide metformin exerts antiproliferative effects in different solid tumors. However, during preclinical studies, metformin concentrations required to induce cell growth arrest were invariably within the mM range, thus difficult to translate in a clinical setting. Consequently, the search for more potent metformin derivatives is a current goal for new drug development. Although several cell-specific intracellular mechanisms contribute to the anti-tumor activity of metformin, the inhibition of the chloride intracellular channel 1 activity (CLIC1) at G1/S transition is a key events in metformin antiproliferative effect in glioblastoma stem cells (GSCs). Here we tested several known biguanide-related drugs for the ability to affect glioblastoma (but not normal) stem cell viability, and in particular: phenformin, a withdrawn antidiabetic drug; moroxydine, a former antiviral agent; and proguanil, an antimalarial compound, all of them possessing a linear biguanide structure as metformin; moreover, we evaluated cycloguanil, the active form of proguanil, characterized by a cyclized biguanide moiety. All these drugs caused a significant impairment of GSC proliferation, invasiveness, and self-renewal reaching IC50 values significantly lower than metformin, (range 0.054-0.53 mM vs. 9.4 mM of metformin). All biguanides inhibited CLIC1-mediated ion current, showing the same potency observed in the antiproliferative effects, with the exception of proguanil which was ineffective. These effects were specific for GSCs, since no (or little) cytotoxicity was observed in normal umbilical cord mesenchymal stem cells, whose viability was not affected by metformin and moroxydine, while cycloguanil and phenformin induced toxicity only at much higher concentrations than required to reduce GSC proliferation or invasiveness. Conversely, proguanil was highly cytotoxic also for normal mesenchymal stem cells. In conclusion, the inhibition of CLIC1 activity represents a biguanide class-effect to impair GSC viability, invasiveness, and self-renewal, although dissimilarities among different drugs were observed as far as potency, efficacy and selectivity as CLIC1 inhibitors. Being CLIC1 constitutively active in GSCs, this feature is relevant to grant the molecules with high specificity toward GSCs while sparing normal cells. These results could represent the basis for the development of novel biguanide-structured molecules, characterized by high antitumor efficacy and safe toxicological profile.

8.
Mol Cancer Ther ; 17(11): 2451-2461, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30135216

RESUMEN

Glioblastoma (GB) is the most lethal, aggressive, and diffuse brain tumor. The main challenge for successful treatment is targeting the cancer stem cell (CSC) subpopulation responsible for tumor origin, progression, and recurrence. Chloride Intracellular Channel 1 (CLIC1), highly expressed in CSCs, is constitutively present in the plasma membrane where it is associated with chloride ion permeability. In vitro, CLIC1 inhibition leads to a significant arrest of GB CSCs in G1 phase of the cell cycle. Furthermore, CLIC1 knockdown impairs tumor growth in vivo Here, we demonstrate that CLIC1 membrane localization and function is specific for GB CSCs. Mesenchymal stem cells (MSC) do not show CLIC1-associated chloride permeability, and inhibition of CLIC1 protein function has no influence on MSC cell-cycle progression. Investigation of the basic functions of GB CSCs reveals a constitutive state of oxidative stress and cytoplasmic alkalinization compared with MSCs. Both intracellular oxidation and cytoplasmic pH changes have been reported to affect CLIC1 membrane functional expression. We now report that in CSCs these three elements are temporally linked during CSC G1-S transition. Impeding CLIC1-mediated chloride current prevents both intracellular ROS accumulation and pH changes. CLIC1 membrane functional impairment results in GB CSCs resetting from an allostatic tumorigenic condition to a homeostatic steady state. In contrast, inhibiting NADPH oxidase and NHE1 proton pump results in cell death of both GB CSCs and MSCs. Our results show that CLIC1 membrane protein is crucial and specific for GB CSC proliferation, and is a promising pharmacologic target for successful brain tumor therapies. Mol Cancer Ther; 17(11); 2451-61. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/patología , Canales de Cloruro/metabolismo , Fase G1 , Glioblastoma/patología , Células Madre Neoplásicas/patología , Especies Reactivas de Oxígeno/metabolismo , Fase S , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Células Madre Neoplásicas/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...