Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 18(1): 13, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050971

RESUMEN

BACKGROUND: Hybridisation and introgression play key roles in the evolutionary history of animal species. They are commonly observed within several orders in wild birds. The domestic chicken Gallus gallus domesticus is the most common livestock species. More than 65 billion chickens are raised annually to produce meat and 80 million metric tons of egg for global human consumption by the commercial sector. Unravelling the origin of its genetic diversity has major application for sustainable breeding improvement programmes. RESULTS: In this study, we report genome-wide analyses for signatures of introgression between indigenous domestic village chicken and the four wild Gallus species. We first assess the genome-wide phylogeny and divergence time across the genus Gallus. Genome-wide sequence divergence analysis supports a sister relationship between the Grey junglefowl G. sonneratii and Ceylon junglefowl G. lafayettii. Both species form a clade that is sister to the Red junglefowl G. gallus, with the Green junglefowl G. varius the most ancient lineage within the genus. We reveal extensive bidirectional introgression between the Grey junglefowl and the domestic chicken and to a much lesser extent with the Ceylon junglefowl. We identify a single case of Green junglefowl introgression. These introgressed regions include genes with biological functions related to development and immune system. CONCLUSIONS: Our study shows that while the Red junglefowl is the main ancestral species, introgressive hybridisation episodes have impacted the genome and contributed to the diversity of the domestic chicken, although likely at different levels across its geographic range.


Asunto(s)
Evolución Biológica , Pollos/genética , Introgresión Genética , Genoma , Animales , Animales Salvajes/genética , Filogenia
2.
Genet Sel Evol ; 50(1): 38, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037326

RESUMEN

BACKGROUND: Cannibalism is an important welfare problem in the layer industry. Cannibalism is a social behavior where individual survival is affected by direct genetic effects (DGE) and indirect genetic effects (IGE). Previous studies analysed repeated binomial survival, instead of survival time, which improved accuracies of breeding value predictions. Our study aimed at identifying SNPs associated with DGE and IGE for survival time, and comparing results from models that analyse survival time and repeated binomial survival. METHODS: Survival data of three layer crosses (W1 * WA, W1 * WB, and W1 * WC) were used. Each individual had one survival time record and 13 monthly survival (0/1) records. Approximately 30,000 single nucleotide polymorphisms (SNPs) were included in the genome-wide association study (GWAS), using a linear mixed model for survival time, a linear mixed model and a generalized linear mixed model for repeated binomial survival (0/1). Backwards elimination was used to determine phenotypic and genetic variance explained by SNPs. RESULTS: The same quantitative trait loci were identified with all models. A SNP associated with DGE was found in cross W1 * WA, with an allele substitution effect of 22 days. This SNP explained 3% of the phenotypic variance, and 36% of the total genetic variance. Four SNPs associated with DGE were found in cross W1 * WB, with effects ranging from 16 to 35 days. These SNPs explained 1 to 6% of the phenotypic variance and 9 to 44% of the total genetic variance. Our results suggest a link of DGE and IGE for survival time in layers with the gamma-aminobutyric acid (GABA) system, since a SNP located near a gene for a GABA receptor was associated with DGE and with IGE (not significant). CONCLUSIONS: This is one of the first large studies investigating the genetic architecture of a socially-affected trait. The power to detect SNP associations was relatively low and thus we expect that many effects on DGE and IGE remained undetected. Yet, GWAS results revealed SNPs with large DGE and a link of DGE and IGE for survival time in layers with the GABAergic system, which supports existing evidence for the involvement of GABA in the development of abnormal behaviors.


Asunto(s)
Conducta Animal , Pollos/fisiología , Estudio de Asociación del Genoma Completo/veterinaria , Sitios de Carácter Cuantitativo , Conducta Social , Animales , Cruzamiento , Canibalismo , Pollos/genética , Femenino , Masculino , Modelos Estadísticos , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de GABA/genética
3.
Genet Sel Evol ; 50(1): 17, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661130

RESUMEN

BACKGROUND: Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data. RESULTS: We analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations. CONCLUSIONS: We present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.


Asunto(s)
Pollos/genética , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia , Secuenciación Completa del Genoma/veterinaria , Animales , Animales Domésticos , Cruzamiento , Variación Genética , Genotipo , Haplotipos , Recombinación Genética , Selección Genética
4.
Genet Sel Evol ; 50(1): 7, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29566646

RESUMEN

BACKGROUND: Sex-linked slow (SF) and fast (FF) feathering rates at hatch have been widely used in poultry breeding for autosexing at hatch. In chicken, the sex-linked K (SF) and k+ (FF) alleles are responsible for the feathering rate phenotype. Allele K is dominant and a partial duplication of the prolactin receptor gene has been identified as the causal mutation. Interestingly, some domesticated turkey lines exhibit similar slow- and fast-feathering phenotypes, but the underlying genetic components and causal mutation have never been investigated. In this study, our aim was to investigate the molecular basis of feathering rate at hatch in domestic turkey. RESULTS: We performed a sequence-based case-control association study and detected a genomic region on chromosome Z, which is statistically associated with rate of feathering at hatch in turkey. We identified a 5-bp frameshift deletion in the prolactin receptor (PRLR) gene that is responsible for slow feathering at hatch. All female cases (SF turkeys) were hemizygous for this deletion, while 188 controls (FF turkeys) were hemizygous or homozygous for the reference allele. This frameshift mutation introduces a premature stop codon and six novel amino acids (AA), which results in a truncated PRLR protein that lacks 98 C-terminal AA. CONCLUSIONS: We present the causal mutation for feathering rate in turkey that causes a partial C-terminal loss of the prolactin receptor, and this truncated PRLR protein is strikingly similar to the protein encoded by the slow feathering K allele in chicken.


Asunto(s)
Pollos/genética , Mutación del Sistema de Lectura , Receptores de Prolactina/genética , Análisis de Secuencia de ADN/veterinaria , Pavos/genética , Alelos , Secuencia de Aminoácidos , Animales , Pollos/metabolismo , Duplicación Cromosómica , Plumas , Femenino , Estudios de Asociación Genética/veterinaria , Hemicigoto , Masculino , Fenotipo , Receptores de Prolactina/metabolismo , Pavos/metabolismo
5.
Front Immunol ; 8: 1879, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375555

RESUMEN

Natural antibodies (NAb) are antigen binding antibodies present in individuals without a previous exposure to this antigen. Keyhole limpet hemocyanin (KLH)-binding NAb levels were previously associated with survival in chickens. This suggests that selective breeding for KLH-binding NAb may increase survival by means of improved general disease resistance. Genome-wide association studies (GWAS) were performed to identify genes underlying genetic variation in NAb levels. The studied population consisted of 1,628 adolescent layer chickens with observations for titers of KLH-binding NAb of the isotypes IgM, IgA, IgG, the total KLH-binding (IgT) NAb titers, total antibody concentrations of the isotypes IgM, IgA, IgG, and the total antibodies concentration in plasma. GWAS were performed using 57,636 single-nucleotide polymorphisms (SNP). One chromosomal region on chromosome 4 was associated with KLH-binding IgT NAb, and total IgM concentration, and especially with KLH-binding IgM NAb. The region of interest was fine mapped by imputing the region of the study population to whole genome sequence, and subsequently performing an association study using the imputed sequence variants. 16 candidate genes were identified, of which FAM114A1, Toll-like receptor 1 family member B (TLR1B), TLR1A, Krüppel-like factor 3 (KLF3) showed the strongest associations. SNP located in coding regions of the candidate genes were checked for predicted changes in protein functioning. One SNP (at 69,965,939 base pairs) received the maximum impact score from two independent prediction tools, which makes this SNP the most likely causal variant. This SNP is located in TLR1A, which suggests a fundamental role of TLR1A on regulation of IgM levels (i.e., KLH-binding IgM NAb, and total IgM concentration), or B cells biology, or both. This study contributes to increased understanding of (genetic) regulation of KLH-binding NAb levels, and total antibody concentrations.

6.
Genet Sel Evol ; 48(1): 68, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623765

RESUMEN

BACKGROUND: Mortality due to cannibalism causes both economic and welfare problems in laying hens. To limit mortality due to cannibalism, laying hens are often beak-trimmed, which is undesirable for animal welfare reasons. Genetic selection is an alternative strategy to increase survival and is more efficient by taking heritable variation that originates from social interactions into account, which are modelled as the so-called indirect genetic effects (IGE). Despite the considerable heritable variation in survival time due to IGE, genetic improvement of survival time in laying hens is still challenging because the detected heritable variation of the trait with IGE is still limited, ranging from 0.06 to 0.26, and individuals that are still alive at the end of the recording period are censored. Furthermore, survival time records are available late in life and only on females. To cope with these challenges, we tested the hypothesis that genomic prediction increases the accuracy of estimated breeding values (EBV) compared to parental average EBV, and increases response to selection for survival time compared to a traditional breeding scheme. We tested this hypothesis in two lines of brown layers with intact beaks, which show cannibalism, and also the hypothesis that the rate of inbreeding per year is lower for genomic selection than for the traditional breeding scheme. RESULTS AND DISCUSSION: The standard deviation of genomic prediction EBV for survival time was around 22 days for both lines, indicating good prospects for selection against mortality in laying hens with intact beaks. Genomic prediction increased the accuracy of the EBV by 35 and 32 % compared to the parent average EBV for the two lines. At the current reference population size, predicted response to selection was 91 % higher when using genomic selection than with the traditional breeding scheme, as a result of a shorter generation interval in males and greater accuracy of selection in females. The predicted rate of inbreeding per generation with truncation selection was substantially lower for genomic selection than for the traditional breeding scheme for both lines. CONCLUSIONS: Genomic selection for socially affected traits is a promising tool for the improvement of survival time in laying hens with intact beaks.


Asunto(s)
Canibalismo , Pollos/genética , Animales , Conducta Animal/fisiología , Femenino , Pruebas Genéticas/métodos , Genómica/métodos , Linaje , Fenotipo , Selección Genética
7.
BMC Genet ; 16: 101, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26282557

RESUMEN

BACKGROUND: Genotype imputation has become a standard practice in modern genetic research to increase genome coverage and improve the accuracy of genomic selection (GS) and genome-wide association studies (GWAS). We assessed accuracies of imputing 60K genotype data from lower density single nucleotide polymorphism (SNP) panels using a small set of the most common sires in a population of 2140 white layer chickens. Several factors affecting imputation accuracy were investigated, including the size of the reference population, the level of the relationship between the reference and validation populations, and minor allele frequency (MAF) of the SNP being imputed. RESULTS: The accuracy of imputation was assessed with different scenarios using 22 and 62 carefully selected reference animals (Ref(22) and Ref(62)). Animal-specific imputation accuracy corrected for gene content was moderate on average (~ 0.80) in most scenarios and low in the 3K to 60K scenario. Maximum average accuracies were 0.90 and 0.93 for the most favourable scenario for Ref(22) and Ref(62) respectively, when SNPs were masked independent of their MAF. SNPs with low MAF were more difficult to impute, and the larger reference population considerably improved the imputation accuracy for these rare SNPs. When Ref(22) was used for imputation, the average imputation accuracy decreased by 0.04 when validation population was two instead of one generation away from the reference and increased again by 0.05 when validation was three generations away. Selecting the reference animals from the most common sires, compared with random animals from the population, considerably improved imputation accuracy for low MAF SNPs, but gave only limited improvement for other MAF classes. The allelic R(2) measure from Beagle software was found to be a good predictor of imputation reliability (correlation ~ 0.8) when the density of validation panel was very low (3K) and the MAF of the SNP and the size of the reference population were not extremely small. CONCLUSIONS: Even with a very small number of animals in the reference population, reasonable accuracy of imputation can be achieved. Selecting a set of the most common sires, rather than selecting random animals for the reference population, improves the imputation accuracy of rare alleles, which may be a benefit when imputing with whole genome re-sequencing data.


Asunto(s)
Pollos/genética , Genética de Población , Estudio de Asociación del Genoma Completo , Genotipo , Alelos , Animales , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
8.
Genet Sel Evol ; 46: 75, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25374005

RESUMEN

BACKGROUND: Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. METHODS: In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. RESULTS: When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. CONCLUSIONS: Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.


Asunto(s)
Genómica/métodos , Modelos Genéticos , Modelos Estadísticos , Animales , Animales Endogámicos , Pollos/genética , Huevos , Femenino , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Análisis de Regresión
9.
Genet Sel Evol ; 46: 57, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25927219

RESUMEN

BACKGROUND: The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. METHODS: Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we evaluated the following genomic prediction models: genome-enabled BLUP (GBLUP), ridge regression BLUP (RRBLUP), principal component analysis followed by ridge regression (RRPCA), BayesC and Bayesian stochastic search variable selection. Prediction accuracy was measured as the correlation between predicted breeding values and observed phenotypes divided by the square root of the heritability. The data used concerned laying hens with phenotypes for number of eggs in the first production period and known genotypes. The hens were from two closely-related brown layer lines (B1 and B2), and a third distantly-related white layer line (W1). Lines had 1004 to 1023 training animals and 238 to 240 validation animals. Training datasets consisted of animals of either single lines, or a combination of two or all three lines, and had 30 508 to 45 974 segregating single nucleotide polymorphisms. RESULTS: Genomic prediction models yielded 0.13 to 0.16 higher accuracies than pedigree-based BLUP. When excluding the line itself from the training dataset, genomic predictions were generally inaccurate. Use of multiple lines marginally improved prediction accuracy for B2 but did not affect or slightly decreased prediction accuracy for B1 and W1. Differences between models were generally small except for RRPCA which gave considerably higher accuracies for B2. Correlations between genomic predictions from different methods were higher than 0.96 for W1 and higher than 0.88 for B1 and B2. The greater differences between methods for B1 and B2 were probably due to the lower accuracy of predictions for B1 (~0.45) and B2 (~0.40) compared to W1 (~0.76). CONCLUSIONS: Multi-line genomic prediction did not affect or slightly improved prediction accuracy for closely-related lines. For distantly-related lines, multi-line genomic prediction yielded similar or slightly lower accuracies than single-line genomic prediction. Bayesian variable selection and GBLUP generally gave similar accuracies. Overall, RRPCA yielded the greatest accuracies for two lines, suggesting that using PCA helps to alleviate the "n ≪ p" problem in genomic prediction.


Asunto(s)
Cruzamiento , Pollos/genética , Genómica/métodos , Modelos Genéticos , Animales , Teorema de Bayes , Huevos , Femenino , Genoma , Genotipo , Modelos Lineales , Linaje , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Carácter Cuantitativo Heredable
10.
PLoS One ; 7(2): e32720, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22384281

RESUMEN

Identifying genomics regions that are affected by selection is important to understand the domestication and selection history of the domesticated chicken, as well as understanding molecular pathways underlying phenotypic traits and breeding goals. While whole-genome approaches, either high-density SNP chips or massively parallel sequencing, have been successfully applied to identify evidence for selective sweeps in chicken, it has been difficult to distinguish patterns of selection and stochastic and breed specific effects. Here we present a study to identify selective sweeps in a large number of chicken breeds (67 in total) using a high-density (58 K) SNP chip. We analyzed commercial chickens representing all major breeding goals. In addition, we analyzed non-commercial chicken diversity for almost all recognized traditional Dutch breeds and a selection of representative breeds from China. Based on their shared history or breeding goal we in silico grouped the breeds into 14 breed groups. We identified 396 chromosomal regions that show suggestive evidence of selection in at least one breed group with 26 of these regions showing strong evidence of selection. Of these 26 regions, 13 were previously described and 13 yield new candidate genes for performance traits in chicken. Our approach demonstrates the strength of including many different populations with similar, and breed groups with different selection histories to reduce stochastic effects based on single populations.


Asunto(s)
Genoma , Alelos , Animales , Cruzamiento , Pollos , China , ADN/metabolismo , Marcadores Genéticos/genética , Genotipo , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Modelos Estadísticos , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética , Programas Informáticos , Especificidad de la Especie
11.
BMC Genet ; 12: 61, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21745371

RESUMEN

BACKGROUND: The turkey (Meleagris gallopavo) is an important agricultural species and is the second largest contributor to the world's poultry meat production. Demand of turkey meat is increasing very rapidly. Genetic markers linked to genes affecting quantitative traits can increase the selection response of animal breeding programs. The use of these molecular markers for the identification of quantitative trait loci, and subsequently fine-mapping of quantitative trait loci regions, allows for pinpointing of genes that underlie such economically important traits. RESULTS: The quantitative trait loci analyses of the growth curve, body weight, breast yield and the meat quality traits showed putative quantitative trait loci on 21 of the 27 turkey chromosomes covered by the linkage map. Forty-five quantitative trait loci were detected across all traits and these were found in 29 different regions on 21 chromosomes. Out of the 45 quantitative trait loci, twelve showed significant (p<0.01) evidence of linkage while the remaining 33 showed suggestive evidence (p<0.05) of linkage with different growth, growth curve, meat quality and breast yield traits. CONCLUSION: A large number of quantitative trait loci were detected across the turkey genome, which affected growth, breast yield and meat quality traits. Pleiotropic effects or close linkages between quantitative trait loci were suggested for several of the chromosomal regions. The comparative analysis regarding the location of quantitative trait loci on different turkey, and on the syntenic chicken chromosomes, along with their phenotypic associations, revealed signs of functional conservation between these species.


Asunto(s)
Genoma , Carne , Sitios de Carácter Cuantitativo , Pavos/genética , Animales , Peso Corporal , Cruzamiento , Pollos/genética , Pollos/crecimiento & desarrollo , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Genotipo , Masculino , Pavos/crecimiento & desarrollo
12.
BMC Genomics ; 12(1): 274, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21627800

RESUMEN

BACKGROUND: In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important. RESULTS: We describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly. CONCLUSIONS: The high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.


Asunto(s)
Pollos , Mapeo Cromosómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Animales , Marcadores Genéticos , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos
13.
BMC Genomics ; 12: 94, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21291514

RESUMEN

BACKGROUND: Variation within individual genomes ranges from single nucleotide polymorphisms (SNPs) to kilobase, and even megabase, sized structural variants (SVs), such as deletions, insertions, inversions, and more complex rearrangements. Although much is known about the extent of SVs in humans and mice, species in which they exert significant effects on phenotypes, very little is known about the extent of SVs in the 2.5-times smaller and less repetitive genome of the chicken. RESULTS: We identified hundreds of shared and divergent SVs in four commercial chicken lines relative to the reference chicken genome. The majority of SVs were found in intronic and intergenic regions, and we also found SVs in the coding regions. To identify the SVs, we combined high-throughput short read paired-end sequencing of genomic reduced representation libraries (RRLs) of pooled samples from 25 individuals and computational mapping of DNA sequences from a reference genome. CONCLUSION: We provide a first glimpse of the high abundance of small structural genomic variations in the chicken. Extrapolating our results, we estimate that there are thousands of rearrangements in the chicken genome, the majority of which are located in non-coding regions. We observed that structural variation contributes to genetic differentiation among current domesticated chicken breeds and the Red Jungle Fowl. We expect that, because of their high abundance, SVs might explain phenotypic differences and play a role in the evolution of the chicken genome. Finally, our study exemplifies an efficient and cost-effective approach for identifying structural variation in sequenced genomes.


Asunto(s)
Genoma/genética , Variación Estructural del Genoma/genética , Análisis de Secuencia de ADN/métodos , Animales , Pollos
14.
BMC Genet ; 12: 14, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21266032

RESUMEN

BACKGROUND: Turkey is an important agricultural species and is largely used as a meat bird. In 2004, turkey represented 6.5% of the world poultry meat production. The world-wide turkey population has rapidly grown due to increased commercial farming. Due to the high demand for turkey meat from both consumers and industry global turkey stocks increased from 100 million in 1970 to over 276 million in 2004. This rapidly increasing importance of turkeys was a reason to design this study for the estimation of genetic parameters that control body weight, body composition, meat quality traits and parameters that shape the growth curve in turkey birds. RESULTS: The average heritability estimate for body weight traits was 0.38, except for early weights that were strongly affected by maternal effects. This study showed that body weight traits, upper asymptote (a growth curve trait), percent breast meat and redness of meat had high heritability whereas heritabilities of breast length, breast width, percent drip loss, ultimate pH, lightness and yellowness of meat were medium to low. We found high positive genetic and phenotypic correlations between body weight, upper asymptote, most breast meat yield traits and percent drip loss but percent drip loss was found strongly negatively correlated with ultimate pH. Percent breast meat, however, showed genetic correlations close to zero with body weight traits and upper asymptote. CONCLUSION: The results of this analysis and the growth curve from the studied population of turkey birds suggest that the turkey birds could be selected for breeding between 60 and 80 days of age in order to improve overall production and the production of desirable cuts of meat. The continuous selection of birds within this age range could promote high growth rates but specific attention to meat quality would be needed to avoid a negative impact on the quality of meat.


Asunto(s)
Composición Corporal/genética , Peso Corporal/genética , Variación Genética , Animales , Aves de Corral , Pavos/genética , Pavos/crecimiento & desarrollo
15.
BMC Genomics ; 11: 647, 2010 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-21092123

RESUMEN

BACKGROUND: The turkey (Meleagris gallopavo) is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. RESULTS: Eighteen full sib families, comprising 1008 (35 F1 and 973 F2) birds, were genotyped for 775 single nucleotide polymorphisms (SNPs). Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM) with the largest linkage group (81 loci) measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. CONCLUSION: Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.


Asunto(s)
Pollos/genética , Mapeo Cromosómico , Cromosomas/genética , Reordenamiento Génico/genética , Genoma/genética , Polimorfismo de Nucleótido Simple/genética , Pavos/genética , Animales , Secuencia de Bases , Marcadores Genéticos , Genotipo , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Recombinación Genética/genética , Sintenía/genética
16.
BMC Genet ; 10: 86, 2009 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-20021697

RESUMEN

BACKGROUND: The chicken (Gallus gallus), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of approximately 1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs). RESULTS: At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r2 for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb. CONCLUSION: Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.


Asunto(s)
Pollos/genética , Mapeo Cromosómico , Haplotipos , Desequilibrio de Ligamiento , Animales , Femenino , Frecuencia de los Genes , Genética de Población , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
17.
Genet Sel Evol ; 41: 11, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19284677

RESUMEN

The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction.


Asunto(s)
Animales Domésticos/genética , Cruzamiento , Mapeo Cromosómico , Marcadores Genéticos , Sitios de Carácter Cuantitativo , Animales , Femenino , Genoma , Haplotipos , Masculino , Modelos Genéticos , Polimorfismo Genético
18.
Proc Natl Acad Sci U S A ; 105(45): 17312-7, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18981413

RESUMEN

Breed utilization, genetic improvement, and industry consolidation are predicted to have major impacts on the genetic composition of commercial chickens. Consequently, the question arises as to whether sufficient genetic diversity remains within industry stocks to address future needs. With the chicken genome sequence and more than 2.8 million single-nucleotide polymorphisms (SNPs), it is now possible to address biodiversity using a previously unattainable metric: missing alleles. To achieve this assessment, 2551 informative SNPs were genotyped on 2580 individuals, including 1440 commercial birds. The proportion of alleles lacking in commercial populations was assessed by (1) estimating the global SNP allele frequency distribution from a hypothetical ancestral population as a reference, then determining the portion of the distribution lost, and then (2) determining the relationship between allele loss and the inbreeding coefficient. The results indicate that 50% or more of the genetic diversity in ancestral breeds is absent in commercial pure lines. The missing genetic diversity resulted from the limited number of incorporated breeds. As such, hypothetically combining stocks within a company could recover only preexisting within-breed variability, but not more rare ancestral alleles. We establish that SNP weights act as sentinels of biodiversity and provide an objective assessment of the strains that are most valuable for preserving genetic diversity. This is the first experimental analysis investigating the extant genetic diversity of virtually an entire agricultural commodity. The methods presented are the first to characterize biodiversity in terms of allelic diversity and to objectively link rate of allele loss with the inbreeding coefficient.


Asunto(s)
Pollos/genética , Variación Genética , Genoma/genética , Endogamia , Polimorfismo de Nucleótido Simple/genética , Animales , Frecuencia de los Genes , Genotipo
19.
PLoS Genet ; 4(2): e1000010, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18454198

RESUMEN

Yellow skin is an abundant phenotype among domestic chickens and is caused by a recessive allele (W*Y) that allows deposition of yellow carotenoids in the skin. Here we show that yellow skin is caused by one or more cis-acting and tissue-specific regulatory mutation(s) that inhibit expression of BCDO2 (beta-carotene dioxygenase 2) in skin. Our data imply that carotenoids are taken up from the circulation in both genotypes but are degraded by BCDO2 in skin from animals carrying the white skin allele (W*W). Surprisingly, our results demonstrate that yellow skin does not originate from the red junglefowl (Gallus gallus), the presumed sole wild ancestor of the domestic chicken, but most likely from the closely related grey junglefowl (Gallus sonneratii). This is the first conclusive evidence for a hybrid origin of the domestic chicken, and it has important implications for our views of the domestication process.


Asunto(s)
Pollos/genética , Pigmentación de la Piel/genética , Alelos , Animales , Pollos/metabolismo , ADN Mitocondrial/genética , Femenino , Genes Recesivos , Hibridación Genética , Masculino , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Pigmentación de la Piel/fisiología , beta-Caroteno 15,15'-Monooxigenasa/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
20.
Genetics ; 175(2): 867-77, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17151254

RESUMEN

S*S (Silver), S*N (wild type/gold), and S*AL (sex-linked imperfect albinism) form a series of alleles at the S (Silver) locus on chicken (Gallus gallus) chromosome Z. Similarly, sex-linked imperfect albinism (AL*A) is the bottom recessive allele at the orthologous AL locus in Japanese quail (Coturnix japonica). The solute carrier family 45, member 2, protein (SLC45A2), previously denoted membrane-associated transporter protein (MATP), has an important role in vesicle sorting in the melanocytes. Here we report five SLC45A2 mutations. The 106delT mutation in the chicken S*AL allele results in a frameshift and a premature stop codon and the corresponding mRNA appears to be degraded by nonsense-mediated mRNA decay. A splice-site mutation in the Japanese quail AL*A allele causes in-frame skipping of exon 4. Two independent missense mutations (Tyr277Cys and Leu347Met) were associated with the Silver allele in chicken. The functional significance of the former mutation, associated only with Silver in White Leghorn, is unclear. Ala72Asp was associated with the cinnamon allele (AL*C) in the Japanese quail. The most interesting feature concerning the SLC45A2 variants documented in this study is the specific inhibition of expression of red pheomelanin in Silver chickens. This phenotypic effect cannot be explained on the basis of the current, incomplete, understanding of SLC45A2 function. It is an enigma why recessive null mutations at this locus cause an almost complete absence of both eumelanin and pheomelanin whereas some missense mutations are dominant and cause a specific inhibition of pheomelanin production.


Asunto(s)
Pollos/genética , Coturnix/genética , Plumas/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación Missense/genética , Pigmentación/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cruzamiento , Cruzamientos Genéticos , Exones/genética , Femenino , Regulación de la Expresión Génica , Ligamiento Genético , Masculino , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...