Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338838

RESUMEN

Dysfunctions of lipid metabolism are associated with tumor progression and treatment resistance of cutaneous melanoma. BRAF/MEK inhibitor resistance is linked to alterations of melanoma lipid pathways. We evaluated whether a specific lipid pattern characterizes plasma from melanoma patients and their response to therapy. Plasma samples from patients and controls were analyzed for FASN and DHCR24 levels and lipidomic profiles. FASN and DHCR24 expression resulted in association with disease condition and related to plasma cholesterol and triglycerides in patients at different disease stages (n = 144) as compared to controls (n = 115). Untargeted lipidomics in plasma (n = 40) from advanced disease patients and controls revealed altered levels of different lipids, including fatty acid derivatives and sphingolipids. Targeted lipidomics identified higher levels of dihydroceramides, ceramides, sphingomyelins, ganglioside GM3, sphingosine, sphingosine-1-phosphate, and dihydrosphingosine, saturated and unsaturated fatty acids. When melanoma patients were stratified based on a long/short-term clinical response to kinase inhibitors, differences in plasma levels were shown for saturated fatty acids (FA 16:0, FA18:0) and oleic acid (FA18:1). Our results associated altered levels of selected lipid species in plasma of melanoma patients with a more favorable prognosis. Although obtained in a small cohort, these results pave the way to lipidomic profiling for melanoma patient stratification.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Ácidos Grasos/metabolismo , Esfingolípidos , Triglicéridos
2.
J Immunother Cancer ; 12(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177075

RESUMEN

Durable remissions are observed in 10%-20% of treated patients with advanced metastatic melanoma but the factors associated with long-term complete clinical responses are largely unknown. Here, we report the molecular characteristics of tumor evolution during disease progression along a 9-year clinical course in a patient with advanced disseminated melanoma who received different treatments, including trametinib, ipilimumab, radiation, vemurafenib, surgical tumor debulking and a second ipilimumab course, ultimately achieving complete long-term disease remission.Longitudinal analyses of therapies-resistant metastatic tumors revealed the effects of different treatments on tumor's microenvironment and immunogenicity, ultimately creating a milieu favorable to immunotherapy response. Monitoring of the temporal dynamics of T cells by analysis of the T cell receptor (TCR) repertoire in the tumor and peripheral blood during disease evolution indicated that T-cell clones with common TCR rearrangements, present at low levels at baseline, were maintained and expanded after immunotherapy, and that TCR diversity increased. Analysis of genetic, molecular, and cellular components of the tumor depicted a multistep process in which treatment with kinase inhibitors strongly conditioned the immune microenvironment creating an inflamed milieu converting cold into hot tumors, while ipilimumab impacted and increased the TCR repertoire, a requirement for tumor rejection.Since the optimal sequencing of treatment with antibodies targeting immune checkpoints and kinase inhibitors for advanced melanoma is still clinically debated, this case indicates that immunotherapy success is possible even after progression on targeted therapy.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ipilimumab/uso terapéutico , Vemurafenib , Linfocitos T/patología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Microambiente Tumoral
3.
Front Oncol ; 13: 1182853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790750

RESUMEN

Metastatic dissemination is still one of the major causes of death of melanoma's patients. KiSS1 is a metastasis suppressor originally identified in melanoma cells, known to play an important physiological role in mammals' development and puberty. It has been previously shown that expression of KiSS1 could be increased in lung cancer cells using epigenetic agents, and that KiSS1 could have a pro-apoptotic action in combination with cisplatin. Thus, the aim of the present study was to examine in human melanoma vemurafenib sensitive- and -resistant BRAF mutant cells characterized by different mutational profiles and KiSS1, KiSS1 receptor and KiSS1 drug-induced release, if peptides derived from KiSS1 cleavage, i.e., kisspeptin 54, could increase the sensitivity to vemurafenib of human melanoma, using cellular, molecular and biochemical approaches. We found that kisspeptin 54 increases vemurafenib pro-apoptotic activity in a statistically significant manner, also in drug resistant cellular models. The efficacy of the combination appears to reflect the intrinsic susceptibility of each cell line to PLX4032-induced apoptosis, together with the different mutational profile as well as perturbation of proteins regulating the apoptotic pathway, The results presented here highlight the possibility to exploit KiSS1 to modulate the apoptotic response to therapeutically relevant agents, suggesting a multitasking function of this metastasis suppressor.

4.
Curr Issues Mol Biol ; 44(10): 4790-4802, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36286041

RESUMEN

Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17ß-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3' untranslated region (3'UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17ß-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17ß-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17ß-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17ß-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.

5.
Front Cell Dev Biol ; 10: 927118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912092

RESUMEN

Drug resistance limits the achievement of persistent cures for the treatment of melanoma, in spite of the efficacy of the available drugs. The aim of the present study was to explore the involvement of lipid metabolism in melanoma resistance and assess the effects of its targeting in cellular models of melanoma with acquired resistance to the BRAF-inhibitor PLX4032/Vemurafenib. Since transcriptional profiles pointed to decreased cholesterol and fatty acids synthesis in resistant cells as compared to their parental counterparts, we examined lipid composition profiles of resistant cells, studied cell growth dependence on extracellular lipids, assessed the modulation of enzymes controlling the main nodes in lipid biosynthesis, and evaluated the effects of targeting Acetyl-CoA Acetyltransferase 2 (ACAT2), the first enzyme in the cholesterol synthesis pathway, and Acyl-CoA Cholesterol Acyl Transferase (ACAT/SOAT), which catalyzes the intracellular esterification of cholesterol and the formation of cholesteryl esters. We found a different lipid composition in the resistant cells, which displayed reduced saturated fatty acids (SFA), increased monounsaturated (MUFA) and polyunsaturated (PUFA), and reduced cholesteryl esters (CE) and triglycerides (TG), along with modulated expression of enzymes regulating biosynthetic nodes of the lipid metabolism. The effect of tackling lipid metabolism pathways in resistant cells was evidenced by lipid starvation, which reduced cell growth, increased sensitivity to the BRAF-inhibitor PLX4032, and induced the expression of enzymes involved in fatty acid and cholesterol metabolism. Molecular targeting of ACAT2 or pharmacological inhibition of SOAT by avasimibe showed antiproliferative effects in melanoma cell lines and a synergistic drug interaction with PLX4032, an effect associated to increased ferroptosis. Overall, our findings reveal that lipid metabolism affects melanoma sensitivity to BRAF inhibitors and that extracellular lipid availability may influence tumor cell response to treatment, a relevant finding in the frame of personalized therapy. In addition, our results indicate new candidate targets for drug combination treatments.

6.
J Invest Dermatol ; 142(11): 3030-3040.e5, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35643181

RESUMEN

The genetic landscape of melanoma resistance to targeted therapy with small molecules inhibiting BRAF and MEK kinases is still largely undefined. In this study, we portrayed in detail the somatic alterations of resistant melanoma and explored the associated biological processes and their integration with transcriptional profiles. By targeted next-generation sequencing and whole-exome sequencing analyses, a list of 101 genes showing imbalance in metastatic tumors from patients with a complete/durable response or disease progression during therapy with vemurafenib or with dabrafenib and trametinib was defined. Classification of altered genes in functional categories indicated that the mutational pattern of both resistant tumors and melanoma cell lines was enriched in gene families involved in oncogenic signaling pathways and in DNA repair. Integration of genomic and transcriptomic features showed that the enrichment of mutations in gene sets associated with anabolic processes, chromatin alterations, and IFN-α response determined a significant positive modulation of the same gene signatures at the transcriptional level. In particular, MTORC1 signaling was enriched in tumors from poorly responsive patients and in resistant tumors excised from treated patients. Results indicate that genetic patterns are associated with melanoma resistance to targeted therapy and disclose the underlying key molecular pathways to define drug combinations for improved personalized therapies.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/uso terapéutico , Mutación , Cromatina , Diana Mecanicista del Complejo 1 de la Rapamicina , Quinasas de Proteína Quinasa Activadas por Mitógenos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
8.
Semin Cancer Biol ; 86(Pt 1): 64-79, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509614

RESUMEN

To what extent extracellular vesicles (EVs) can impact anti-tumor immune responses has only started to get unraveled. Their nanometer dimensions, their growing number of subtypes together with the difficulties in defining their origin hamper their investigation. The existence of tumor cell lines facilitated advance in cancer EV understanding, while capturing information about phenotypes and functions of immune cell EVs in this context is more complex. The advent of immunotherapy with immune checkpoint inhibitors has further deepened the need to dissect the impact of EVs during immune activation and response, not least to contribute unraveling and preventing the generation of resistance occurring in the majority of patients. Here we discuss the factors that influence anddrive the immune response in cancer patients in the context of cancer therapeutics and the roles or possible functions that EVs can have in this scenario. With immune cell-derived EVs as leitmotiv, we will journey from EV discovery and subtypes through physiological and pathological functions, from similarities with tumor EVs to measures to revert detrimental consequences on immune responses to cancer.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Inmunoterapia , Inmunidad , Línea Celular Tumoral
9.
Front Immunol ; 13: 1068091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591316

RESUMEN

Immunotherapy with immune checkpoint inhibitors can induce durable clinical responses in different human malignancies but the number of responding patients remains globally modest. The limited therapeutic efficacy of ICI depends on multiple factors, among which the immune suppressive features of the tumor microenvironment play a key role. For this reason, experimental models that enable dissection of the immune-hostile tumor milieu components are required to unravel how to overcome resistance and obtain full-fledged anti-tumor immunity. Recent evidence supports the usefulness of 3D ex vivo systems in retaining features of tumor microenvironment to elucidate molecular and immunologic mechanisms of response and resistance to immune checkpoint blockade. In this perspective article we discuss the recent advances in patient-derived 3D tumor models and their potential in support of treatment decision making in clinical setting. We will also share our experience with dynamic bioreactor tumor explant culture of samples from melanoma and sarcoma patients as a reliable and promising platform to unravel immune responses to immune checkpoint inhibitors.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Biomarcadores , Inmunoterapia , Inmunidad , Microambiente Tumoral
10.
Genes (Basel) ; 12(9)2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34573422

RESUMEN

The MITF-E318K variant has been implicated in genetic predisposition to cutaneous melanoma. We addressed the occurrence of MITF-E318K and its association with germline status of CDKN2A and MC1R genes in a hospital-based series of 248 melanoma patients including cohorts of multiple, familial, pediatric, sporadic and melanoma associated with other tumors. Seven MITF-E318K carriers were identified, spanning every group except the pediatric patients. Three carriers showed mutated CDKN2A, five displayed MC1R variants, while the sporadic carrier revealed no variants. Germline/tumor whole exome sequencing for this carrier revealed germline variants of unknown significance in ATM and FANCI genes and, in four BRAF-V600E metastases, somatic loss of the MITF wild-type allele, amplification of MITF-E318K and deletion of a 9p21.3 chromosomal region including CDKN2A and MTAP. In silico analysis of tumors from MITF-E318K melanoma carriers in the TCGA Pan-Cancer-Atlas dataset confirmed the association with BRAF mutation and 9p21.3 deletion revealing a common genetic pattern. MTAP was the gene deleted at homozygous level in the highest number of patients. These results support the utility of both germline and tumor genome analysis to define tumor groups providing enhanced information for clinical strategies and highlight the importance of melanoma prevention programs for MITF-E318K patients.


Asunto(s)
Mutación de Línea Germinal , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 9 , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Receptor de Melanocortina Tipo 1/genética , Secuenciación del Exoma , Adulto Joven , Melanoma Cutáneo Maligno
11.
Cancers (Basel) ; 13(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34439311

RESUMEN

The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II-IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0-I, II and III-IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0-I) from late (III-IV) stages' CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III-IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV' FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.

12.
Cancers (Basel) ; 13(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068792

RESUMEN

Metabolic changes promoting cell survival are involved in metastatic melanoma progression and in the development of drug resistance. In BRAF-inhibitor resistant melanoma cells, we explored the role of FASN, an enzyme involved in lipogenesis overexpressed in metastatic melanoma. Resistant melanoma cells displaying enhanced migratory and pro-invasive abilities increased sensitivity to the BRAF inhibitor PLX4032 upon the molecular targeting of FASN and upon treatment with the FASN inhibitor orlistat. This behavior was associated with a marked apoptosis and caspase 3/7 activation observed for the drug combination. The expression of FASN was found to be inversely associated with drug resistance in BRAF-mutant cell lines, both in a set of six resistant/sensitive matched lines and in the Cancer Cell Line Encyclopedia. A favorable drug interaction in resistant cells was also observed with U18666 A inhibiting DHCR24, which increased upon FASN targeting. The simultaneous combination of the two inhibitors showed a synergistic interaction with PLX4032 in resistant cells. In conclusion, FASN plays a role in BRAF-mutated melanoma progression, thereby creating novel therapeutic opportunities for the treatment of melanoma.

13.
Cell Commun Signal ; 18(1): 156, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967672

RESUMEN

BACKGROUND: Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance. METHODS: The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy. RESULTS: miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor. CONCLUSIONS: Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Resistencia a Antineoplásicos , Mediadores de Inflamación/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Melanoma/patología , MicroARNs/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Front Immunol ; 11: 1214, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793185

RESUMEN

Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control in subsets of patients. However, its effect can be blunted by myeloid-induced resistance mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound healing and to immune homeostasis maintenance. In cancer, their physiological activities can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences. The involvement of MDSCs in tumor development and progression has been widely investigated and MDSC-induced immunosuppression is acknowledged as a mechanism hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising metabolism and function, as well as their skewing to a MDSC phenotype. miR expression can be indirectly induced by cancer-derived factors or through direct miR import via extracellular vesicles. Due to their structural stability and their presence in body fluids miRs represent promising predictive biomarkers of resistance, as we recently found by investigating plasma samples of melanoma patients undergoing immune checkpoint blockade. Dissection of the miR-driven involved mechanisms would pave the way for the identification of new druggable targets. Here, we discuss the role of these miRs in shaping myeloid resistance to immunotherapy with a special focus on immunosuppression and immune escape.


Asunto(s)
MicroARNs/genética , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Humanos , Inmunomodulación/genética , Terapia de Inmunosupresión , Inmunoterapia , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Escape del Tumor/inmunología
15.
Exp Dermatol ; 29(10): 980-986, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32748461

RESUMEN

Melanoma is the most deadly skin cancer, and its incidence is growing. EZH2, a member of the Polycomb Group (PcGs) proteins family, plays an important biological role in the occurrence and development of melanoma. EZH2 germline genetic polymorphisms have not been yet evaluated in melanoma predisposition. Three hundred thirty sporadic Italian melanoma patients and 333 healthy volunteers were genotyped to analyse the association between EZH2 variants rs6950683, rs2302427, rs3757441, rs2072408 and melanoma risk. The functionality of rs6950683 alleles was investigated in keratinocytes (HaCat), melanoma cells (A375) and human embryonic kidney cells (HEK293), using promoter-reporter assays. Genotype distribution of SNPs showed that rs6950683T and rs3757441C alleles were positively associated with melanoma risk (P = .003 and .004, respectively). Haplotype analysis revealed that TCCA and CCCG haplotypes were associated with a higher risk of melanoma (P = .02 and .04, respectively). Functional assays demonstrated that allele rs6950683T reduce promoter activity in the three cell lines analysed compared to C allele. rs6950683T and rs3757441C alleles in the EZH2 gene appear positively associated with melanoma risk in the analysed population. In addition, we demonstrated for the first time the functional role of rs6950683 upstream polymorphism on EZH2 gene expression regulation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Predisposición Genética a la Enfermedad/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Alelos , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/genética , Células HEK293 , Células HaCaT , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Factores de Riesgo
16.
Cancer Res ; 80(12): 2676-2688, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32291316

RESUMEN

Targeting the MAPK pathway by combined inhibition of BRAF and MEK has increased overall survival in advanced BRAF-mutant melanoma in both therapeutic and adjuvant clinical settings. However, a significant proportion of tumors develop acquired resistance, leading to treatment failure. We have previously shown p63 to be an important inhibitor of p53-induced apoptosis in melanoma following genotoxic drug exposure. Here, we investigated the role of p63 in acquired resistance to MAPK inhibition and show that p63 isoforms are upregulated in melanoma cell lines chronically exposed to BRAF and MEK inhibition, with consequent increased resistance to apoptosis. This p63 upregulation was the result of its reduced degradation by the E3 ubiquitin ligase FBXW7. FBXW7 was itself regulated by MDM2, and in therapy-resistant melanoma cell lines, nuclear accumulation of MDM2 caused downregulation of FBXW7 and consequent upregulation of p63. Consistent with this, both FBXW7-inactivating mutations and MDM2 upregulation were found in melanoma clinical samples. Treatment of MAPK inhibitor-resistant melanoma cells with MDM2 inhibitor Nutlin-3A restored FBXW7 expression and p63 degradation in a dose-dependent manner and sensitized these cells to apoptosis. Collectively, these data provide a compelling rationale for future investigation of Nutlin-3A as an approach to abrogate acquired resistance of melanoma to MAPK inhibitor targeted therapy. SIGNIFICANCE: Upregulation of p63, an unreported mechanism of MAPK inhibitor resistance in melanoma, can be abrogated by treatment with the MDM2 inhibitor Nutlin-3A, which may serve as a strategy to overcome resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Masculino , Melanoma/genética , Melanoma/patología , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Piperazinas/farmacología , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Piel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
17.
Sci Rep ; 10(1): 3612, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107391

RESUMEN

Methods for phenotype and outcome prediction are largely based on inductive supervised models that use selected biomarkers to make predictions, without explicitly considering the functional relationships between individuals. We introduce a novel network-based approach named Patient-Net (P-Net) in which biomolecular profiles of patients are modeled in a graph-structured space that represents gene expression relationships between patients. Then a kernel-based semi-supervised transductive algorithm is applied to the graph to explore the overall topology of the graph and to predict the phenotype/clinical outcome of patients. Experimental tests involving several publicly available datasets of patients afflicted with pancreatic, breast, colon and colorectal cancer show that our proposed method is competitive with state-of-the-art supervised and semi-supervised predictive systems. Importantly, P-Net also provides interpretable models that can be easily visualized to gain clues about the relationships between patients, and to formulate hypotheses about their stratification.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias Colorrectales/diagnóstico , Redes Reguladoras de Genes , Redes Neurales de la Computación , Neoplasias Pancreáticas/diagnóstico , Algoritmos , Inteligencia Artificial , Neoplasias de la Mama/epidemiología , Neoplasias Colorrectales/epidemiología , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Femenino , Humanos , Individualidad , Masculino , Neoplasias Pancreáticas/epidemiología , Fenotipo , Pronóstico , Transcriptoma , Resultado del Tratamiento
18.
Virchows Arch ; 474(4): 407-420, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30374798

RESUMEN

It has been for long conceived that hallmarks of cancer were intrinsic genetic features driving tumor development, proliferation, and progression, and that targeting such cell-autonomous pathways could be sufficient to achieve therapeutic cancer control. Clinical ex vivo data demonstrated that treatment efficacy often relied on the contribution of host immune responses, hence introducing the concept of tumor microenvironment (TME), namely the existence, along with tumor cells, of non-tumor components that could significantly influence tumor growth and survival. Among the complex network of TME-driving forces, immunity plays a key role and the balance between antitumor and protumor immune responses is a major driver in contrasting or promoting cancer spreading. TME is usually a very immunosuppressed milieu because of a vast array of local alterations contrasting antitumor adaptive immunity, where metabolic changes contribute to cancer dissemination by impairing T cell infiltration and favoring the accrual and activation of regulatory cells. Subcellular structures known as extracellular vesicles then help spreading immunosuppression at systemic levels by distributing genetic and protein tumor repertoire in distant tissues. A major improvement in the knowledge of TME is now pointing the attention back to tumor cells; indeed, recent findings are showing how oncogenic pathways and specific mutations in tumor cells can actually dictate the nature and the function of immune infiltrate. As our information on the reciprocal interactions regulating TME increases, finding a strategy to interfere with TME crosstalk becomes more complex and challenging. Nevertheless, TME interactions represent a promising field for the discovery of novel biomarkers and therapeutic targets for improving treatment efficacy in cancer.


Asunto(s)
Neoplasias/inmunología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos , Inmunoterapia/métodos
19.
J Clin Invest ; 128(12): 5505-5516, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30260323

RESUMEN

The accrual of myeloid-derived suppressor cells (MDSCs) represents a major obstacle to effective immunotherapy in cancer patients, but the mechanisms underlying this process in the human setting remain elusive. Here, we describe a set of microRNAs (miR-146a, miR-155, miR-125b, miR-100, let-7e, miR-125a, miR-146b, miR-99b) that are associated with MDSCs and resistance to treatment with immune checkpoint inhibitors in melanoma patients. The miRs were identified by transcriptional analyses as being responsible for the conversion of monocytes into MDSCs (CD14+HLA-DRneg cells) mediated by melanoma extracellular vesicles (EVs) and were shown to recreate MDSC features upon transfection. In melanoma patients, these miRs were increased in circulating CD14+ monocytes, plasma, and tumor samples, where they correlated with the myeloid cell infiltrate. In plasma, their baseline levels clustered with the clinical efficacy of CTLA-4 or programmed cell death protein 1 (PD-1) blockade. Hence, MDSC-related miRs represent an indicator of MDSC activity in cancer patients and a potential blood marker of a poor immunotherapy outcome.


Asunto(s)
Inmunoterapia , Leucocitos Mononucleares/inmunología , Melanoma Experimental/inmunología , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/inmunología , ARN Neoplásico/inmunología , Animales , Femenino , Humanos , Leucocitos Mononucleares/patología , Masculino , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones , Células Supresoras de Origen Mieloide/patología
20.
Genes (Basel) ; 7(12)2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27983661

RESUMEN

Sentinel node biopsy (SNB) is a main staging biomarker in melanoma and is the first lymph node to drain the tumor, thus representing the immunological site where anti-tumor immune dysfunction is established and where potential prognostic immune markers can be identified. Here we analyzed microRNA (miR) profiles in archival tumor-positive SNBs derived from melanoma patients with different outcomes and performed an integrated analysis of transcriptional data to identify deregulated immune signaling networks. Twenty-six miRs were differentially expressed in melanoma-positive SNB samples between patients with disease progression and non-progressing patients, the majority being previously reported in the regulation of immune responses. A significant variation in miR expression levels was confirmed in an independent set of SNB samples. Integrated information from genome-wide transcriptional profiles and in vitro assessment in immune cells led to the identification of miRs associated with the regulation of the TNF receptor superfamily member 8 (TNFRSF8) gene encoding the CD30 receptor, a marker increased in lymphocytes of melanoma patients with progressive disease. These findings indicate that miRs are involved in the regulation of pathways leading to immune dysfunction in the sentinel node and may provide valuable markers for developing prognostic molecular signatures for the identification of stage III melanoma patients at risk of recurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...