Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 12(1): 6997, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873176

RESUMEN

Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/genética , Desoxiglucosa/farmacología , Mitocondrias/efectos de los fármacos , Mutación Puntual , Células A549 , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Células Cultivadas , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosa/análogos & derivados , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
2.
Hum Mol Genet ; 26(6): 1087-1103, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087734

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by polyglutamine expansion in the androgen receptor (AR) and characterized by the loss of lower motor neurons. Here we investigated pathological processes occurring in muscle biopsy specimens derived from SBMA patients and, as controls, age-matched healthy subjects and patients suffering from amyotrophic lateral sclerosis (ALS) and neurogenic atrophy. We detected atrophic fibers in the muscle of SBMA, ALS and neurogenic atrophy patients. In addition, SBMA muscle was characterized by the presence of a large number of hypertrophic fibers, with oxidative fibers having a larger size compared with glycolytic fibers. Polyglutamine-expanded AR expression was decreased in whole muscle, yet enriched in the nucleus, and localized to mitochondria. Ultrastructural analysis revealed myofibrillar disorganization and streaming in zones lacking mitochondria and degenerating mitochondria. Using molecular (mtDNA copy number), biochemical (citrate synthase and respiratory chain enzymes) and morphological (dark blue area in nicotinamide adenine dinucleotide-stained muscle cross-sections) analyses, we found a depletion of the mitochondria associated with enhanced mitophagy. Mass spectrometry analysis revealed an increase of phosphatidylethanolamines and phosphatidylserines in mitochondria isolated from SBMA muscles, as well as a 50% depletion of cardiolipin associated with decreased expression of the cardiolipin synthase gene. These observations suggest a causative link between nuclear polyglutamine-expanded AR accumulation, depletion of mitochondrial mass, increased mitophagy and altered mitochondrial membrane composition in SBMA muscle patients. Given the central role of mitochondria in cell bioenergetics, therapeutic approaches toward improving the mitochondrial network are worth considering to support SBMA patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Trastornos Musculares Atróficos/genética , Péptidos/genética , Receptores Androgénicos/genética , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/fisiopatología , Andrógenos/metabolismo , Animales , Biopsia , ADN Mitocondrial/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitofagia/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Trastornos Musculares Atróficos/fisiopatología
3.
Sci Rep ; 7: 41046, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117338

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease characterized by the loss of lower motor neurons. SBMA is caused by expansions of a polyglutamine tract in the gene coding for androgen receptor (AR). Expression of polyglutamine-expanded AR causes damage to motor neurons and skeletal muscle cells. Here we investigated the effect of ß-agonist stimulation in SBMA myotube cells derived from mice and patients, and in knock-in mice. We show that treatment of myotubes expressing polyglutamine-expanded AR with the ß-agonist clenbuterol increases their size. Clenbuterol activated the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway and decreased the accumulation of polyglutamine-expanded AR. Treatment of SBMA knock-in mice with clenbuterol, which was started at disease onset, ameliorated motor function and extended survival. Clenbuterol improved muscle pathology, attenuated the glycolytic-to-oxidative metabolic alterations occurring in SBMA muscles and induced hypertrophy of both glycolytic and oxidative fibers. These results indicate that ß-agonist stimulation is a novel therapeutic strategy for SBMA.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Clenbuterol/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Trastornos Musculares Atróficos/tratamiento farmacológico , Receptores Androgénicos/genética , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología , Péptidos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Expansión de Repetición de Trinucleótido
4.
J Tissue Eng Regen Med ; 11(1): 138-152, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-24809626

RESUMEN

The development of new human skeletal muscle tissue is an alternative approach to the replacement of tissue after severe damage, for example in the case of traumatic injury, where surgical reconstruction is often needed following major loss of natural tissue. Treatment to date has involved the transfer of muscle tissue from other sites, resulting in a functional loss and volume deficiency of donor sites. Approaches that seek to eliminate these problems include the relatively new solution of skeletal muscle engineering. Here there are two main components to consider: (a) the cells with their regenerative potential; and (b) the polymeric structure onto which cells are seeded and where they must perform their activities. In this paper we describe well-defined two- and three-dimensional polymeric structures able to drive the myoblast process of adhesion, proliferation and differentiation. We examine a series of polymers and protein adhesions with which to functionalize the structures, and cell-seeding methods, with a view to defining the optimal protocol for engineering skeletal muscle tissue. All polymer samples were tested for their mechanical and biological properties, to support the validity of our results in the real context of muscle tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.


Asunto(s)
Músculo Esquelético/crecimiento & desarrollo , Regeneración , Ingeniería de Tejidos/métodos , Andamios del Tejido , Materiales Biocompatibles/química , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Diseño de Equipo , Fibroblastos/citología , Humanos , Mioblastos/citología , Polímeros/química , Presión , Estrés Mecánico , Jeringas , Andamios del Tejido/química , Tripsina/química
5.
Autophagy ; 12(11): 2098-2112, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27627835

RESUMEN

Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/metabolismo , Mutación/genética , Células A549 , Autofagia/efectos de los fármacos , Autofagia/genética , Citoplasma/metabolismo , Metabolismo Energético , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Mitofagia/genética , Oligomicinas/farmacología , Proteína Sequestosoma-1/metabolismo
6.
Am J Hum Genet ; 98(6): 1130-1145, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259049

RESUMEN

Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.


Asunto(s)
Mutación del Sistema de Lectura/genética , Enfermedades Mitocondriales/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Nucleotidiltransferasas/genética , Riboflavina/farmacología , Complejo Vitamínico B/farmacología , Adulto , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Transporte de Electrón , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Flavina-Adenina Dinucleótido/metabolismo , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutagénesis Sitio-Dirigida , Unión Proteica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
7.
Acta Neuropathol ; 132(1): 127-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26971100

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glucólisis , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Atrofia/metabolismo , Atrofia/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Glucólisis/fisiología , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones Transgénicos , Músculo Esquelético/patología , Trastornos Musculares Atróficos/patología , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Distribución Aleatoria , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal
8.
Exp Cell Res ; 342(1): 39-51, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26905645

RESUMEN

Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro.


Asunto(s)
Mioblastos/fisiología , Distrofia Miotónica/patología , Empalme Alternativo , Diferenciación Celular , Células Cultivadas , Humanos , Fibras Musculares Esqueléticas/fisiología , Cultivo Primario de Células , Sarcómeros/metabolismo , Expansión de Repetición de Trinucleótido
9.
Acta Neuropathol ; 126(1): 109-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23644820

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disease caused by expansion of a polyglutamine (polyQ) tract in the androgen receptor (AR). SBMA is triggered by the interaction between polyQ-AR and its natural ligands, testosterone and dihydrotestosterone (DHT). SBMA is characterized by the loss of lower motor neurons and skeletal muscle fasciculations, weakness, and atrophy. To test the hypothesis that the interaction between polyQ-AR and androgens exerts cell-autonomous toxicity in skeletal muscle, we characterized the process of myogenesis and polyQ-AR expression in DHT-treated satellite cells obtained from SBMA patients and age-matched healthy control subjects. Treatment with androgens increased the size and number of myonuclei in myotubes from control subjects, but not from SBMA patients. Myotubes from SBMA patients had a reduced number of nuclei, suggesting impaired myotube fusion and altered contractile structures. The lack of anabolic effects of androgens on myotubes from SBMA patients was not due to defects in myoblast proliferation, differentiation or apoptosis. DHT treatment of myotubes from SBMA patients increased nuclear accumulation of polyQ-AR and decreased the expression of interleukin-4 (IL-4) when compared to myotubes from control subjects. Following DHT treatment, exposure of myotubes from SBMA patients with IL-4 treatment rescued myonuclear number and size to control levels. This supports the hypothesis that androgens alter the fusion process in SBMA myogenesis. In conclusion, these results provide evidence of an androgen-dependent impairment of myogenesis in SBMA that could contribute to disease pathogenesis.


Asunto(s)
Andrógenos/farmacología , Dihidrotestosterona/farmacología , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Adulto , Análisis de Varianza , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Interacciones Farmacológicas , Femenino , Humanos , Hipertrofia/inducido químicamente , Etiquetado Corte-Fin in Situ , Interleucina-4/farmacología , Interleucina-4/fisiología , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Miosinas/metabolismo , Péptidos/genética , Factores de Tiempo , Adulto Joven
10.
Genes (Basel) ; 4(2): 275-92, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24705164

RESUMEN

The pathogenesis of Myotonic Dystrophy type 1 (DM1) is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S) during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC) coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER) stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.

11.
Curr Pharm Des ; 19(14): 2649-75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23116402

RESUMEN

The primary role of the water-soluble vitamin B2, i.e. riboflavin, in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, reductases and oxidases involved in energetic metabolism, redox homeostasis and protein folding as well as in diverse regulatory events. Deficiency of riboflavin in men and experimental animal models has been linked to several diseases, including neuromuscular and neurological disorders and cancer. Riboflavin at pharmacological doses has been shown to play unexpected and incompletely understood regulatory roles. Besides a summary on riboflavin uptake and a survey on riboflavin-related diseases, the main focus of this review is on discovery and characterization of FAD synthase (EC 2.7.7.2) and other components of the cellular networks that ensure flavin cofactor homeostasis.Special attention is devoted to the problem of sub-cellular compartmentalization of cofactor synthesis in eukaryotes, made possible by the existence of different FAD synthase isoforms and specific molecular components involved in flavin trafficking across sub-cellular membranes.Another point addressed in this review is the mechanism of cofactor delivery to nascent apo-proteins, especially those localized into mitochondria, where they integrate FAD in a process that involves additional mitochondrial protein(s) still to be identified. Further efforts are necessary to elucidate the role of riboflavin/FAD network in human pathologies and to exploit the structural differences between human and microbial/fungal FAD synthase as the rational basis for developing novel antibiotic/antimycotic drugs.


Asunto(s)
Mononucleótido de Flavina/biosíntesis , Flavina-Adenina Dinucleótido/biosíntesis , Deficiencia de Riboflavina/metabolismo , Secuencia de Aminoácidos , Animales , Mononucleótido de Flavina/química , Mononucleótido de Flavina/genética , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/genética , Homeostasis/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad de Órganos , Riboflavina/química , Riboflavina/genética , Riboflavina/metabolismo , Alineación de Secuencia , Especificidad de la Especie
12.
Neurobiol Dis ; 49: 107-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22975021

RESUMEN

Skeletal muscle mitochondrial dysfunction is believed to play a role in the progression and severity of amyotrophic lateral sclerosis (ALS). The regulation of transcriptional co-activators involved in mitochondrial biogenesis and function in ALS is not well known. When compared with healthy control subjects, patients with ALS, but not neurogenic disease (ND), had lower levels of skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA and protein and estrogen-related receptor-α (ERRα) and mitofusin-2 (Mfn2) mRNA. PGC-1ß, nuclear respiratory factor-1 (NRF-1) and Mfn1 mRNA as well as cytochrome C oxidase subunit IV (COXIV) mRNA and protein were lower in patients with ALS and ND. Both patient groups had reductions in citrate synthase and cytochrome c oxidase activity. Similar observations were made in skeletal muscle from transgenic ALS G93A transgenic mice. In vitro, PGC-1α and PGC-1ß regulated Mfn1 and Mfn2 in an ERRα-dependent manner. Compared to healthy controls, miRNA 23a, 29b, 206 and 455 were increased in skeletal muscle of ALS patients. miR-23a repressed PGC-1α translation in a 3' UTR dependent manner. Transgenic mice over expressing miR-23a had a reduction in PGC-1α, cytochome-b and COXIV protein levels. These results show that skeletal muscle mitochondrial dysfunction in ALS patients is associated with a reduction in PGC-1α signalling networks involved in mitochondrial biogenesis and function, as well as increases in several miRNAs potentially implicated in skeletal muscle and neuromuscular junction regeneration. As miR-23a negatively regulates PGC-1α signalling, therapeutic inhibition of miR-23a may be a strategy to rescue PGC-1α activity and ameliorate skeletal muscle mitochondrial function in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Transgénicos , MicroARNs/genética , Persona de Mediana Edad , Mutación , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Adulto Joven
13.
Proteomics ; 11(4): 657-74, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21241019

RESUMEN

This review compiles results of medical relevance from mitochondrial proteomics, grouped either according to the type of disease - genetic or degenerative - or to the involved mechanism - oxidative stress or apoptosis. The findings are commented in the light of our current understanding of uniformity/variability in cell responses to different stimuli. Specificities in the conceptual and technical approaches to human mitochondrial proteomics are also outlined.


Asunto(s)
Enfermedades Genéticas Congénitas/metabolismo , Proteínas Mitocondriales/análisis , Enfermedades Neurodegenerativas/metabolismo , Proteómica/métodos , Animales , Humanos
14.
J Transl Med ; 8: 48, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20487562

RESUMEN

BACKGROUND: MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified in silico as attractive candidates for binding to the DMPK mRNA. METHODS: To this aim, we have profiled the expression of miR-133 (miR-133a, miR-133b), miR-1, miR-181 (miR-181a, miR-181b, miR-181c) and miR-206, that are specifically induced during myogenesis in cardiac and skeletal muscle tissues. miR-103 and miR-107, highly expressed in brain, heart and muscle have also been included in this study. QRT-PCR experiments have been performed on RNA from vastus lateralis biopsies of DM1 patients (n = 7) and control subjects (n = 4). Results of miRNAs expression have been confirmed by Northern blot, whereas in situ hybridization technique have been performed to localize misexpressed miRNAs on muscle sections from DM1 and control individuals. RESULTS: Only miR-206 showed an over-expression in 5 of 7 DM1 patients (threshold = 2, fold change between 1.20 and 13.22, average = 5.37) compared to the control group. This result has been further confirmed by Northern blot analysis (3.37-fold overexpression, R2 = 0.89). In situ hybridization localized miR-206 to nuclear site both in normal and DM1 tissues. Cellular distribution in DM1 tissues includes also the nuclear regions of centralized nuclei, with a strong signal corresponding to nuclear clumps. CONCLUSIONS: This work provides, for the first time, evidences about miRNAs misexpression in DM1 muscle tissues, adding a new element in the pathogenesis of this complex genetic disease.


Asunto(s)
MicroARNs/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/genética , Adulto , Northern Blotting , Western Blotting , Estudios de Casos y Controles , Núcleo Celular/metabolismo , Núcleo Celular/patología , Femenino , Regulación de la Expresión Génica , Humanos , Hibridación in Situ , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Distrofia Miotónica/patología , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Extractos de Tejidos , Utrofina/genética , Utrofina/metabolismo
15.
Hum Mol Genet ; 18(18): 3407-16, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19561330

RESUMEN

Biased segregation of mitochondrial DNA variants has been widely documented, but little was known about its molecular basis. We set out to test the hypothesis that altering the balance between mitochondrial fusion and fission could influence the segregation of mutant and wild-type mtDNA variants, because it would modify the number of organelles per cell. Therefore human cells heteroplasmic for the pathological A3243G mitochondrial DNA mutation were transfected with constructs designed to silence Drp1 or hFis1, whose gene products are required for mitochondrial fission. Drp1 and hFis1 gene silencing were both associated with increased levels of mutant mitochondrial DNA. Thus, the extent of the mitochondrial reticular network appears to be an important factor in determining mutant load. The fact that the level of mutant and wild-type mitochondrial DNA can be manipulated by altering the expression of nuclear encoded factors involved in mitochondrial fission suggests new interventions for mitochondrial DNA disorders.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Mutación , Secuencia de Bases , Línea Celular Tumoral , ADN Mitocondrial/biosíntesis , Regulación hacia Abajo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Dosificación de Gen , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular
16.
Electrophoresis ; 30(8): 1329-41, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19382133

RESUMEN

We describe the characterization of polyclonal antibodies directed against the whole mitochondrial subproteome, as obtained by hyperimmunization of rabbits with an organelle fraction purified from human skeletal muscle and lysed by sonication. After 2-DE separations with either blue native electrophoresis or IPG as first dimension and blotting, the polyspecific antibodies detect 113 proteins in human muscle mitochondria, representative of all major biochemical pathways and oxidative phosphorylation (OXPHOS) complexes, and cross-react with 28 proteins in rat heart mitochondria. Using as sample cryosections of human muscle biopsies lysed in urea/thiourea/CHAPS, the mitochondrial subproteome can be detected against the background of contractile proteins. When comparing with controls samples from mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes patients, immunoblotting shows in the latter a drastic reduction for the subunits of OXPHOS complex I as well as an increase of several enzymes, including ATP synthase. This finding is the first evidence at the proteomic level of massive up-regulation in a number of metabolic pathways by which the affected tissues try to compensate for the deficit in the OXPHOS machinery.


Asunto(s)
Anticuerpos/inmunología , Regulación de la Expresión Génica , Proteínas Mitocondriales , Proteómica/métodos , Acidosis Láctica/metabolismo , Animales , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Humanos , Focalización Isoeléctrica , Encefalomiopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/inmunología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/química , Miocardio/química , Fosforilación Oxidativa , Conejos
17.
Hum Mol Genet ; 17(21): 3291-302, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18678599

RESUMEN

Autosomal dominant optic atrophy (ADOA), the commonest cause of inherited optic atrophy, is caused by mutations in the ubiquitously expressed gene optic atrophy 1 (OPA1), involved in fusion and biogenesis of the inner membrane of mitochondria. Bioenergetic failure, mitochondrial network abnormalities and increased apoptosis have all been proposed as possible causal factors. However, their relative contribution to pathogenesis as well as the prominent susceptibility of the retinal ganglion cell (RGC) in this disease remains uncertain. Here we identify a novel deletion of OPA1 gene in the GTPase domain in three patients affected by ADOA. Muscle biopsy of the patients showed neurogenic atrophy and abnormal morphology and distribution of mitochondria. Confocal microscopy revealed increased mitochondrial fragmentation in fibroblasts as well as in myotubes, where mitochondria were also unevenly distributed, with clustered organelles alternating with areas where mitochondria were sparse. These abnormalities were not associated with altered bioenergetics or increased susceptibility to pro-apoptotic stimuli. Therefore, changes in mitochondrial shape and distribution can be independent of other reported effects of OPA1 mutations, and therefore may be the primary cause of the disease. The arrangement of mitochondria in RGCs, which degenerate in ADOA, may be exquisitely sensitive to disturbance, and this may lead to bioenergetic crisis and/or induction of apoptosis. Our results highlight the importance of mitochondrial dynamics in the disease per se, and point to the loss of the fine positioning of mitochondria in the axons of RGCs as a possible explanation for their predominant degeneration in ADOA.


Asunto(s)
GTP Fosfohidrolasas/genética , Mitocondrias/metabolismo , Atrofia Óptica Autosómica Dominante/genética , Adolescente , Adulto , Apoptosis , Células Cultivadas , Niño , Metabolismo Energético , Femenino , GTP Fosfohidrolasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Músculo Esquelético/anomalías , Músculo Esquelético/enzimología , Atrofia Óptica Autosómica Dominante/fisiopatología , Linaje , Especies Reactivas de Oxígeno/metabolismo , Retina/patología , Eliminación de Secuencia , Adulto Joven
18.
J Neurol Sci ; 264(1-2): 100-5, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17854832

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an adult form of X-linked motor neuron disease caused by an expansion of a CAG repeat sequence in the first exon of the androgen receptor (AR) gene. Nuclear accumulation of mutant AR with expanded polyglutamines in motor neurons is a major pathogenic mechanism. To characterize muscle involvement in SBMA the skeletal muscle biopsies of 8 SBMA patients and 3 female carriers were studied. Six of 8 SBMA patients showed myogenic changes together with the neurogenic atrophy in their muscle biopsy. Myopathic abnormalities did not correlate with disease duration and were more prominent in the muscle of patients with an higher degree of disability. In all patients plasma CK levels were more elevated than what usually occurs in denervative diseases. Both neurogenic and myopathic changes were also observed in female carriers. Here we suggest that myopathic changes in SBMA muscle are not only related to denervation and that muscle satellite cells may have a role in the pathogenesis of muscle damage.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Heterocigoto , Músculo Esquelético/patología , Atrofia Muscular Espinal/patología , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Creatina Quinasa/sangre , Expansión de las Repeticiones de ADN/genética , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Péptidos/genética , Receptores Androgénicos/genética , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Índice de Severidad de la Enfermedad , Caracteres Sexuales
19.
Brain ; 130(Pt 10): 2715-24, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17626036

RESUMEN

The mitochondrial DNA A3243G mutation causes neuromuscular disease. To investigate the muscle-specific pathophysiology of mitochondrial disease, rhabdomyosarcoma transmitochondrial hybrid cells (cybrids) were generated that retain the capacity to differentiate to myotubes. In some cases, striated muscle-like fibres were formed after innervation with rat embryonic spinal cord. Myotubes carrying A3243G mtDNA produced more reactive oxygen species than controls, and had altered glutathione homeostasis. Moreover, A3243G mutant myotubes showed evidence of abnormal mitochondrial distribution, which was associated with down-regulation of three genes involved in mitochondrial morphology, Mfn1, Mfn2 and DRP1. Electron microscopy revealed mitochondria with ultrastructural abnormalities and paracrystalline inclusions. All these features were ameliorated by anti-oxidant treatment, with the exception of the paracrystalline inclusions. These data suggest that rhabdomyosarcoma cybrids are a valid cellular model for studying muscle-specific features of mitochondrial disease and that excess reactive oxygen species production is a significant contributor to mitochondrial dysfunction, which is amenable to anti-oxidant therapy.


Asunto(s)
Antioxidantes/farmacología , Miopatías Mitocondriales/metabolismo , Células Musculares/ultraestructura , Adulto , Animales , Diferenciación Celular , Células Cultivadas , ADN Mitocondrial/genética , Regulación de la Expresión Génica , Humanos , Masculino , Microscopía Electrónica , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/ultraestructura , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Células Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
20.
Electrophoresis ; 28(16): 2953-6, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17640092

RESUMEN

We describe some simple changes to the geometry of the IPG strips that make them suitable to the loading of very large sample volumes and of high-salt solutions. Of special relevance is the possibility of using strips with immobilized plateau(s) to either side of the gradient, or to both, also in connection with in-gel rehydration protocols and focusing in stock trays. The only requirement to achieve this is to leave the all-ready-made attitude and go back to custom polymerization of the IPGs in one's laboratory.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Animales , Electroforesis de las Proteínas Sanguíneas/métodos , Electrodos , Electroforesis en Gel Bidimensional/instrumentación , Concentración de Iones de Hidrógeno , Ratas , Albúmina Sérica/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...