Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065372

RESUMEN

Nanocellulose (NC) is a promising material for drug delivery due to its high surface area-to-volume ratio, biocompatibility, biodegradability, and versatility in various formats (nanoparticles, hydrogels, microspheres, membranes, and films). In this study, nanocellulose films were derived from "Bolaina blanca" (Guazuma crinita) and combined with nanoporous silicon microparticles (nPSi) in concentrations ranging from 0.1% to 1.0% (w/v), using polyvinyl alcohol (PVA) as a binding agent to create NC/nPSi composite films for drug delivery systems. The physicochemical properties of the samples were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The mechanical properties and drug release capabilities were also evaluated using methylene blue (MB) as an antibacterial drug model. Antibacterial assays were conducted against S. aureus and E. coli bacteria. The results show that NC/nPSi composites with 1% nPSi increased the T50% by 10 °C and enhanced mechanical properties, such as a 70% increase in the elastic modulus and a 372% increase in elongation, compared to NC films. Additionally, MB released from NC/nPSi composites effectively inhibited the growth of both bacteria. It was also observed that the diffusion coefficients were inversely proportional to the % nPSi. These findings suggest that this novel NC/nPSi-based material can serve as an effective controlled drug release system.

2.
Materials (Basel) ; 15(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35744373

RESUMEN

The influence of load on the cellulose microfibrils of single cells or thin wood foils is known. It can decrease the cellulose microfibril angles and, in turn, increase the stiffness. However, this modification of a piece of wood, which is made up of multiple cells, is unknown. The aim of this research was to study the effect of tensile creep on the longitudinal stiffness of radiata pine wood. The modulus of elasticity of each specimen was determined before and after being subjected to tensile creep. The samples were loaded at 1170 N and 1530 N for 20 min at 70 °C. The load was determined as a function of a percentage of the force at the proportional limit. The moduli of elasticity before and post-tensile creep showed no effect on the stiffness of wood at the macroscopic level, but neither were there damage to the cell structure. It can be assumed that there are changes at the microscopic level, but they are not enough to be reflected at the macro scale. It is also challenging to achieve the modifications that occur at the level of a single cell or in thin wood foils; however, the implications of this would be favorable for the development of stronger wood-based products.

3.
Foods ; 11(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35206023

RESUMEN

This research evaluated the contribution of nanocomposite films based on different concentrations of nZH-Cu (1%, 2%, and 3%) to the microbiological, organoleptic, and physicochemical characteristics of packed chicken breast meat. Analysis of some meat quality traits, such as microbiological, chemical, and physical, were conducted on a laboratory scale. For this, small squares of chicken breast meat, weighing approximately 10 g, were aseptically wrapped with rectangular pieces of 5 × 10 cm PLA-nZH-Cu nanocomposite films, which were stored at 4 °C for 20 days. The microbiological results indicated efficient antibacterial activity (at any nZH-Cu concentration in the nanocomposite films) on the total viable count of groups of psychrophiles, aerobic mesophiles, Enterobacteriaceae, and Salmonella spp. until day 10 of storage (p < 0.05). No significant changes were observed in the organoleptic (color) and physicochemical qualities (texture, weight, pH, and acidity) until day 10 of storage at 4 °C (p < 0.05). The analysis of the experimental tests carried out determined that the PLA-nZH-Cu nanocomposite films played an effective role in the bacterial safety of the packaged chicken. It was concluded that the nZH-Cu nanocomposite films, at all concentrations tested, extended the shelf life of the chicken breast meat for up to 10 days in a refrigerator at 4 °C.

4.
Materials (Basel) ; 12(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323906

RESUMEN

This article describes the production of nanoparticles of Chilean natural zeolite, using three size reduction methods: Ball mill, microgrinding, and microfluidization. Morphological characterization of samples indicated an average diameter of 37.2 ± 15.8 nm of the zeolite particles. The size reduction and chemical treatments did not affect the morphology or integrity of the zeolite. An increase of the zeolite samples' Si/Al ratio was observed after the acid treatment and was confirmed by SEM-EDX analysis. Moreover, the effectiveness of the copper salt ion exchange (Cu2+) to the zeolite nanoparticles was analyzed by SEM-EDX. XRD analysis indicated that clinoptilolite and mordenite are the main phases of Chilean natural zeolite, and the crystalline structure was not affected by the modification processes. The FTIR characterization showed the presence of chemical bonds of copper with the zeolite nanoparticle framework. The ion-exchanged zeolite nanoparticles were evaluated for antibacterial behavior by the disc diffusion method. Additionally, the minimum inhibitory concentration and minimum bactericidal concentration were obtained. Microbiological assays with copper-exchanged nanozeolites showed an antimicrobial activity with a bactericidal effect against Escherichia coli and Staphylococcus aureus, which are the primary pathogens of food and are also resistant to multiple drugs. In this study, a new application for natural nanozeolites is demonstrated, as the incorporated copper ions (Cu2+) in nanozeolites registered a productive antibacterial activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA