Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(16)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36010657

RESUMEN

Metabolic stresses alter the signaling and actions of insulin in adipocytes during obesity, but the molecular links remain incompletely understood. Members of the microRNA-34 (miR-34 family play a pivotal role in stress response, and previous studies showed an upregulation of miR-34a in adipose tissue during obesity. Here, we identified miR-34a as a new mediator of adipocyte insulin resistance. We confirmed the upregulation of miR-34a in adipose tissues of obese mice, which was observed in the adipocyte fraction exclusively. Overexpression of miR-34a in 3T3-L1 adipocytes or in fat pads of lean mice markedly reduced Akt activation by insulin and the insulin-induced glucose transport. This was accompanied by a decreased expression of VAMP2, a target of miR-34a, and an increased expression of the tyrosine phosphatase PTP1B. Importantly, PTP1B silencing prevented the inhibitory effect of miR-34a on insulin signaling. Mechanistically, miR-34a decreased the NAD+ level through inhibition of Naprt and Nampt, resulting in an inhibition of Sirtuin-1, which promoted an upregulation of PTP1B. Furthermore, the mRNA expression of Nampt and Naprt was decreased in adipose tissue of obese mice. Collectively, our results identify miR-34a as a new inhibitor of insulin signaling in adipocytes, providing a potential pathway to target to fight insulin resistance.


Asunto(s)
Resistencia a la Insulina , MicroARNs , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Adipocitos/metabolismo , Animales , Insulina/metabolismo , Ratones , Ratones Obesos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Tirosina/metabolismo
2.
FASEB J ; 33(2): 2553-2562, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30285581

RESUMEN

The implication of αß and γδ T cells in obesity-associated inflammation and insulin resistance (IR) remains uncertain. Mice lacking γδ T cells show either no difference or a decrease in high-fat diet (HFD)-induced IR, whereas partial depletion in γδ T cells does not protect from HFD-induced IR. αß T-cell deficiency leads to a decrease in white adipose tissue (WAT) inflammation and IR without weight change, but partial depletion of these cells has not been studied. We previously described a mouse model overexpressing peroxisome proliferator-activated receptor ß (PPAR-ß) specifically in T cells [transgenic (Tg) T-PPAR-ß] that exhibits a partial depletion in αß T cells and no change in γδ T-cell number. This results in a decreased αß/γδ T-cell ratio in lymphoid organs. We now show that Tg T-PPAR-ß mice are partially protected against HFD-induced weight gain and exhibit decreased IR and liver steatosis independently of animal weight. These mice display an alteration of WAT-depots distribution with an increased epididymal-WAT mass and a decreased subcutaneous WAT mass. Immune cell number is decreased in both WAT-depots, except for γδ T cells, which are increased in epididymal-WAT. Overall, we show that decreasing αß/γδ T-cell ratio in WAT-depots alters their inflammatory state and mass repartition, which might be involved in improvement of insulin sensitivity.-Le Menn, G., Sibille, B., Murdaca, J., Rousseau, A.-S., Squillace, R., Vergoni, B., Cormont, M., Niot, I., Grimaldi, P. A., Mothe-Satney, I., Neels, J. G. Decrease in αß/γδ T-cell ratio is accompanied by a reduction in high-fat diet-induced weight gain, insulin resistance, and inflammation.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Inflamación/prevención & control , Resistencia a la Insulina , Obesidad/prevención & control , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/metabolismo , Aumento de Peso , Animales , Peso Corporal , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Intolerancia a la Glucosa/prevención & control , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Linfocitos T/inmunología
3.
Cell Rep ; 25(12): 3329-3341.e5, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566860

RESUMEN

Obesity modifies T cell populations in adipose tissue, thereby contributing to adipose tissue inflammation and insulin resistance. Here, we show that Rab4b, a small GTPase governing endocytic trafficking, is pivotal in T cells for the development of these pathological events. Rab4b expression is decreased in adipose T cells from mice and patients with obesity. The specific depletion of Rab4b in T cells causes adipocyte hypertrophy and insulin resistance in chow-fed mice and worsens insulin resistance in obese mice. This phenotype is driven by an increase in adipose Th17 and a decrease in adipose Treg due to a cell-autonomous skew of differentiation toward Th17. The Th17/Treg imbalance initiates adipose tissue inflammation and reduces adipogenesis, leading to lipid deposition in liver and muscles. Therefore, we propose that the obesity-induced loss of Rab4b in adipose T cells may contribute to maladaptive white adipose tissue remodeling and insulin resistance by altering adipose T cell fate.


Asunto(s)
Tejido Adiposo/fisiopatología , Resistencia a la Insulina , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Proteínas de Unión al GTP rab4/deficiencia , Adipocitos/metabolismo , Tejido Adiposo/patología , Envejecimiento/patología , Animales , Complejo CD3/metabolismo , Polaridad Celular , Ácidos Grasos/sangre , Intolerancia a la Glucosa/complicaciones , Humanos , Inflamación/patología , Metabolismo de los Lípidos , Ratones Noqueados , Obesidad/sangre , Obesidad/complicaciones , Obesidad/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al GTP rab4/genética , Proteínas de Unión al GTP rab4/metabolismo
4.
PLoS One ; 13(8): e0201536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092080

RESUMEN

In the context of type 1 diabetes research and the development of insulin-producing ß-cell replacement strategies, whether pancreatic ductal cells retain their developmental capability to adopt an endocrine cell identity remains debated, most likely due to the diversity of models employed to induce pancreatic regeneration. In this work, rather than injuring the pancreas, we developed a mouse model allowing the inducible misexpression of the proendocrine gene Neurog3 in ductal cells in vivo. These animals developed a progressive islet hypertrophy attributed to a proportional increase in all endocrine cell populations. Lineage tracing experiments indicated a continuous neo-generation of endocrine cells exhibiting a ductal ontogeny. Interestingly, the resulting supplementary ß-like cells were found to be functional. Based on these findings, we suggest that ductal cells could represent a renewable source of new ß-like cells and that strategies aiming at controlling the expression of Neurog3, or of its molecular targets/co-factors, may pave new avenues for the improved treatments of diabetes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plasticidad de la Célula/fisiología , Diabetes Mellitus Tipo 1/patología , Células Endocrinas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Conductos Pancreáticos/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diabetes Mellitus Tipo 1/genética , Modelos Animales de Enfermedad , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Conductos Pancreáticos/citología , Regeneración
5.
Diabetes ; 65(10): 3062-74, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27388216

RESUMEN

Activation of the p53 pathway in adipose tissue contributes to insulin resistance associated with obesity. However, the mechanisms of p53 activation and the effect on adipocyte functions are still elusive. Here we found a higher level of DNA oxidation and a reduction in telomere length in adipose tissue of mice fed a high-fat diet and an increase in DNA damage and activation of the p53 pathway in adipocytes. Interestingly, hallmarks of chronic DNA damage are visible at the onset of obesity. Furthermore, injection of lean mice with doxorubicin, a DNA damage-inducing drug, increased the expression of chemokines in adipose tissue and promoted its infiltration by proinflammatory macrophages and neutrophils together with adipocyte insulin resistance. In vitro, DNA damage in adipocytes increased the expression of chemokines and triggered the production of chemotactic factors for macrophages and neutrophils. Insulin signaling and effect on glucose uptake and Glut4 translocation were decreased, and lipolysis was increased. These events were prevented by p53 inhibition, whereas its activation by nutlin-3 reproduced the DNA damage-induced adverse effects. This study reveals that DNA damage in obese adipocytes could trigger p53-dependent signals involved in alteration of adipocyte metabolism and secretory function leading to adipose tissue inflammation, adipocyte dysfunction, and insulin resistance.


Asunto(s)
Adipocitos/metabolismo , Daño del ADN/genética , Proteína p53 Supresora de Tumor/metabolismo , Células 3T3-L1 , Animales , Western Blotting , Quimiotaxis/genética , Quimiotaxis/fisiología , Daño del ADN/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Ratones , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Telómero/genética , Proteína p53 Supresora de Tumor/genética
6.
Mol Endocrinol ; 29(7): 1025-36, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26020725

RESUMEN

Bioactive lipid mediators such as prostaglandin E2 (PGE2) have emerged as potent regulator of obese adipocyte inflammation and functions. PGE2 is produced by cyclooxygenases (COXs) from arachidonic acid, but inflammatory signaling pathways controlling COX-2 expression and PGE2 production in adipocytes remain ill-defined. Here, we demonstrated that the MAP kinase kinase kinase tumor progression locus 2 (Tpl2) controls COX-2 expression and PGE2 secretion in adipocytes in response to different inflammatory mediators. We found that pharmacological- or small interfering RNA-mediated Tpl2 inhibition in 3T3-L1 adipocytes decreased by 50% COX-2 induction in response to IL-1ß, TNF-α, or a mix of the 2 cytokines. PGE2 secretion induced by the cytokine mix was also markedly blunted. At the molecular level, nuclear factor κB was required for Tpl2-induced COX-2 expression in response to IL-1ß but was inhibitory for the TNF-α or cytokine mix response. In a coculture between adipocytes and macrophages, COX-2 was mainly increased in adipocytes and pharmacological inhibition of Tpl2 or its silencing in adipocytes markedly reduced COX-2 expression and PGE2 secretion. Further, Tpl2 inhibition in adipocytes reduces by 60% COX-2 expression induced by a conditioned medium from lipopolysaccharide (LPS)-treated macrophages. Importantly, LPS was less efficient to induce COX-2 mRNA in adipose tissue explants of Tpl2 null mice compared with wild-type and Tpl2 null mice displayed low COX-2 mRNA induction in adipose tissue in response to LPS injection. Collectively, these data established that activation of Tpl2 by inflammatory stimuli in adipocytes and adipose tissue contributes to increase COX-2 expression and production of PGE2 that could participate in the modulation of adipose tissue inflammation during obesity.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Inflamación/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Caspasa 3/metabolismo , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ciclooxigenasa 2/genética , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/deficiencia , Activación de Macrófagos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...