Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119520, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353163

RESUMEN

The microphthalmia-associated transcription factor (MITF) is a master regulator of the melanocyte cell lineage. Aberrant MITF activity can lead to multiple malignancies including skin cancer, where it modulates the progression and invasiveness of melanoma. MITF-regulated gene expression requires recruitment of the transcriptional co-regulator CBP/p300, but details of this process are not fully defined. In this study, we investigate the structural and functional interaction between the MITF N-terminal transactivation domain (MITFTAD) and CBP/p300. Using pulldown assays and nuclear magnetic resonance spectroscopy we determined that MITFTAD is intrinsically disordered and binds to the TAZ1 and TAZ2 domains of CBP/p300 with moderate affinity. The solution-state structure of the MITFTAD:TAZ2 complex reveals that MITF interacts with a hydrophobic surface of TAZ2, while remaining somewhat dynamic. Peptide array and mutagenesis experiments determined that an acidic motif is integral to the MITFTAD:TAZ2 interaction and is necessary for transcriptional activity of MITF. Peptides that bind to the same surface of TAZ2 as MITFTAD, such as the adenoviral protein E1A, are capable of displacing MITF from TAZ2 and inhibiting transactivation. These findings provide insight into co-activator recruitment by MITF that are fundamental to our understanding of MITF targeted gene regulation and melanoma biology.


Asunto(s)
Melanoma , Factor de Transcripción Asociado a Microftalmía , Humanos , Estructura Terciaria de Proteína , Factor de Transcripción Asociado a Microftalmía/genética , Melanoma/genética , Melanoma/patología
2.
Nucleic Acids Res ; 51(7): 3185-3204, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912092

RESUMEN

We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.


Asunto(s)
Gnathostoma , Retroelementos , Animales , Humanos , Mamíferos/genética , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Isoformas de Proteínas/genética , Retroelementos/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Gnathostoma/enzimología , Gnathostoma/genética , Gnathostoma/metabolismo
3.
Appl Microbiol Biotechnol ; 106(23): 7831-7843, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36329133

RESUMEN

Hydrophobins are small proteins secreted by fungi that accumulate at interfaces, modify surface hydrophobicity, and self-assemble into large amyloid-like structures. These unusual properties make hydrophobins an attractive target for commercial applications as emulsifiers and surface modifying agents. Hydrophobins have diverse sequences and tertiary structures, complicating attempts to characterize how they function. Here we describe the atomic resolution structure of the unusual hydrophobin SLH4 (86 aa, 8.4 kDa) and compare its function to another hydrophobin, SC16 (99 aa, 10.2 kDa). Despite containing only one charged residue, SLH4 has a similar structure to SC16 yet has strikingly different rodlet morphology, propensity to self-assemble, and preferred assembly conditions. Secondary structure analysis of both SC16 and SLH4 suggest that during rodlet formation residues in the first intercysteine loop undergo conformational changes. This work outlines a representative structure for class IB hydrophobins and illustrates how hydrophobin surface properties govern self-assembly, which provides context to rationally select hydrophobins for applications as surface modifiers. KEY POINTS: • The atomic-resolution structure of the hydrophobin SLH4 was determined using nuclear magnetic resonance spectroscopy. • The structure of SLH4 outlines a representative structure for class IB hydrophobins. • The assembly characteristics of SLH4 and SC16 are distinct, outlining how surface properties of hydrophobins influence their function.


Asunto(s)
Proteínas Fúngicas , Hongos , Proteínas Fúngicas/metabolismo , Estructura Secundaria de Proteína , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Hongos/metabolismo
4.
Sci Rep ; 12(1): 366, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013607

RESUMEN

Hydrophobins are small proteins that are secreted by fungi, accumulate at interfaces, modify surface hydrophobicity, and self-assemble into large amyloid-like structures. These unusual properties make hydrophobins an attractive target for commercial applications as green emulsifiers and surface modifying agents. Hydrophobins have diverse sequences and tertiary structures, and depending on the hydrophobin, different regions of their structure have been proposed to be required for self-assembly. To provide insight into the assembly process, we determined the first crystal structure of a class I hydrophobin, SC16. Based on the crystal structure, we identified a putative intermolecular contact that may be important for rodlet assembly and was formed in part by the N-terminal tail of SC16. Surprisingly, removal of the N-terminal tail did not influence the self-assembly kinetics of SC16 or the morphology of its rodlets. These results suggest that other regions of this hydrophobin class are required for rodlet formation and indicate that the N-terminal tail of SC16 is amenable to modification so that functionalized hydrophobin assemblies can be created.

5.
Commun Chem ; 5(1): 89, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697674

RESUMEN

Rhodoquinone (RQ) is a close analogue of ubiquinone (UQ) that confers diverse bacterial and eukaryotic taxa the ability to utilize fumarate as an electron acceptor in hypoxic conditions. The RquA protein, identified in a Rhodospirillum rubrum RQ-deficient mutant, has been shown to be required for RQ biosynthesis in bacteria. In this report, we demonstrate that RquA, homologous to SAM-dependent methyltransferases, is necessary and sufficient to catalyze RQ biosynthesis from UQ in vitro. Remarkably, we show that RquA uses SAM as the amino group donor in a substitution reaction that converts UQ to RQ. In contrast to known aminotransferases, RquA does not use pyridoxal 5'-phosphate (PLP) as a coenzyme, but requires the presence of Mn2+ as a cofactor. As these findings reveal, RquA provides an example of a non-canonical SAM-dependent enzyme that does not catalyze methyl transfer, instead it uses SAM in an atypical amino transfer mechanism.

6.
Protein Expr Purif ; 176: 105732, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866612

RESUMEN

Hydrophobins are low molecular weight proteins secreted by fungi that are extremely surface-active and able to self-assemble into larger structures. Due to their unusual biochemical properties, hydrophobins are an attractive target for commercial applications such as drug emulsification and surface modification. When produced in E. coli, hydrophobins are often not soluble and need to be refolded. In this work we use SHuffle T7 Express E. coli coupled with glutathione redox buffers to produce and refold four distinct class IB hydrophobins that originate from Phanerochaete carnosa (PC1), Wallemia ichthyophaga (WI1), Serpula lacrymans (SL1), and Schizophyllum commune (SC16). Proper refolding and function of these purified hydrophobins was confirmed using nuclear magnetic resonance spectroscopy and thioflavin T assays. These results indicate that class IB hydrophobins can be consistently produced and purified from E. coli, aiding future structural and biochemical studies that require highly pure hydrophobins.


Asunto(s)
Basidiomycota/genética , Proteínas Fúngicas , Expresión Génica , Replegamiento Proteico , Basidiomycota/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...