Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 61(1): 249-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19812243

RESUMEN

Non-pathogenic rhizobacteria Pseudomonas spp. can reduce disease in plant tissues through induction of a defence state known as induced systemic resistance (ISR). This resistance is based on multiple bacterial determinants, but nothing is known about the mechanisms underlying rhizobacteria-induced resistance in grapevine. In this study, the ability of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa 7NSK2 to induce resistance in grapevine against Botrytis cinerea is demonstrated. Both strains also triggered an oxidative burst and phytoalexin (i.e. resveratrol and viniferin) accumulation in grape cells and primed leaves for accelerated phytoalexin production upon challenge with B. cinerea. Treatment of cell cultures with crude cell extracts of bacteria strongly enhanced oxidative burst, but resulted in comparable amounts of phytoalexins and resistance to B. cinerea to those induced by living bacteria. This suggests the production of bacterial compounds serving as inducers of disease resistance. Using other strains with different characteristics, it is shown that P. fluorescens WCS417 (Pch-deficient), P. putida WCS358 (Pch- and SA-deficient) and P. fluorescens Q2-87 (a DAPG producer) were all capable of inducing resistance to an extent similar to that induced by CHA0. However, in response to WCS417 (Pch-negative) the amount of H2O2 induced is less than for the CHA0. WCS417 induced low phytoalexin levels in cells and lost the capacity to prime for phytoalexins in the leaves. This suggests that, depending on the strain, SA, pyochelin, and DAPG are potentially effective in inducing or priming defence responses. The 7NSK2 mutants, KMPCH (Pch- and Pvd-negative) and KMPCH-567 (Pch-, Pvd-, and SA-negative) induced only partial resistance to B. cinerea. However, the amount of H2O2 triggered by KMPCH and KMPCH-567 was similar to that induced by 7NSK2. Both mutants also led to a low level of phytoalexins in grapevine cells, while KMPCH slightly primed grapevine leaves for enhanced phytoalexins. This highlights the importance of SA, pyochelin, and/or pyoverdin in priming phytoalexin responses and induced grapevine resistance by 7NSK2 against B. cinerea.


Asunto(s)
Botrytis/fisiología , Inmunidad Innata/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas/fisiología , Vitis/inmunología , Vitis/microbiología , Botrytis/crecimiento & desarrollo , Medios de Cultivo , Estrés Oxidativo , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Rhizobium/crecimiento & desarrollo , Rhizobium/fisiología , Sesquiterpenos , Terpenos/metabolismo , Vitis/citología , Fitoalexinas
2.
Plant Physiol ; 146(3): 1293-304, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18218967

RESUMEN

Colonization of Arabidopsis thaliana roots by nonpathogenic Pseudomonas fluorescens WCS417r bacteria triggers a jasmonate/ethylene-dependent induced systemic resistance (ISR) that is effective against a broad range of pathogens. Microarray analysis revealed that the R2R3-MYB-like transcription factor gene MYB72 is specifically activated in the roots upon colonization by WCS417r. Here, we show that T-DNA knockout mutants myb72-1 and myb72-2 are incapable of mounting ISR against the pathogens Pseudomonas syringae pv tomato, Hyaloperonospora parasitica, Alternaria brassicicola, and Botrytis cinerea, indicating that MYB72 is essential to establish broad-spectrum ISR. Overexpression of MYB72 did not result in enhanced resistance against any of the pathogens tested, demonstrating that MYB72 is not sufficient for the expression of ISR. Yeast two-hybrid analysis revealed that MYB72 physically interacts in vitro with the ETHYLENE INSENSITIVE3 (EIN3)-LIKE3 transcription factor EIL3, linking MYB72 function to the ethylene response pathway. However, WCS417r activated MYB72 in ISR-deficient, ethylene-insensitive ein2-1 plants. Moreover, exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate induced wild-type levels of resistance in myb72-1, suggesting that MYB72 acts upstream of ethylene in the ISR pathway. Collectively, this study identified the transcriptional regulator MYB72 as a novel ISR signaling component that is required in the roots during early signaling steps of rhizobacteria-mediated ISR.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/inmunología , Pseudomonas fluorescens/fisiología , Factores de Transcripción/genética , Acetatos/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Glucanos/metabolismo , Mutagénesis Insercional , Oxilipinas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
3.
Plant Mol Biol ; 57(5): 731-48, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15988566

RESUMEN

Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raíces de Plantas/genética , Estructuras de las Plantas/genética , Pseudomonas/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/microbiología , Ciclopentanos/farmacología , Elementos Transponibles de ADN/genética , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Mutación , Oxilipinas , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/microbiología , Estructuras de las Plantas/microbiología , Plantas Modificadas Genéticamente , Pseudomonas fluorescens/crecimiento & desarrollo , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas syringae/crecimiento & desarrollo , Ácido Salicílico/farmacología , Homología de Secuencia de Aminoácido , Especificidad de la Especie
4.
Mol Plant Microbe Interact ; 17(8): 895-908, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15305611

RESUMEN

Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to the plant hormones jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance, rhizobacteria-mediated ISR is not associated with changes in the expression of genes encoding pathogenesis-related proteins. To identify ISR-related genes, we surveyed the transcriptional response of over 8,000 Arabidopsis genes during rhizobacteria-mediated ISR. Locally in the roots, ISR-inducing Pseudomonas fluorescens WCS417r bacteria elicited a substantial change in the expression of 97 genes. However, systemically in the leaves, none of the approximately 8,000 genes tested showed a consistent change in expression in response to effective colonization of the roots by WCS417r, indicating that the onset of ISR in the leaves is not associated with detectable changes in gene expression. After challenge inoculation of WCS417r-induced plants with the bacterial leaf pathogen P. syringae pv. tomato DC3000, 81 genes showed an augmented expression pattern in ISR-expressing leaves, suggesting that these genes were primed to respond faster or more strongly upon pathogen attack. The majority of the primed genes was predicted to be regulated by jasmonic acid or ethylene signaling. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the broad-spectrum action of rhizobacteria-mediated ISR.


Asunto(s)
Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Rhizobium/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Oxilipinas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Pseudomonas/genética , Pseudomonas/patogenicidad , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crecimiento & desarrollo , Rhizobium/crecimiento & desarrollo , Rhizobium/patogenicidad , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...