Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Affect Disord ; 350: 89-101, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220097

RESUMEN

INTRODUCTION: Developmental changes due to early life variations in the serotonin system affect stress-related behavior and neuroplasticity in adulthood. These outcomes can be caused both by offspring's own and maternal serotonergic genotype. We aimed to dissociate the contribution of the own genotype from the influences of mother genotype. METHODS: Sixty-six male homozygous (5-HTT-/-) and heterozygous (5-HTT+/-) serotonin transporter knockout and wild-type rats from constant 5-HTT genotype mothers crossed with varying 5-HTT genotype fathers were subjected to tests assessing anxiety- and depression-like behaviors. Additionally, we measured plasma corticosterone levels and mRNA levels of BDNF, GABA system and HPA-axis components in the prelimbic and infralimbic cortex. Finally, we assessed the effect of paternal 5-HTT genotype on these measurements in 5-HTT+/- offspring receiving their knockout allele from their mother or father. RESULTS: 5-HTT-/- offspring exhibited increased anxiety- and depression-like behavior in the elevated plus maze and sucrose preference test. Furthermore, Bdnf isoform VI expression was reduced in the prelimbic cortex. Bdnf isoform IV and GABA related gene expression was also altered but did not survive false discovery rate (FDR) correction. Finally, 5-HTT+/- offspring from 5-HTT-/- fathers displayed higher levels of anxiety- and depression-like behavior and changes in GABA, BDNF and HPA-axis related gene expression not surviving FDR correction. LIMITATIONS: Only male offspring was tested. CONCLUSIONS: Offspring's own 5-HTT genotype influences stress-related behaviors and Bdnf isoform VI expression, independently of maternal 5-HTT genotype. Paternal 5-HTT genotype separately influenced these outcomes. These findings advance our understanding of the 5-HTT genotype dependent susceptibility to stress-related disorders.


Asunto(s)
Ansiedad , Depresión , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Masculino , Ratas , Ansiedad/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/genética , Ácido gamma-Aminobutírico , Genotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
2.
Curr Neuropharmacol ; 22(2): 323-338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37475559

RESUMEN

The development of new antipsychotics with pro-cognitive properties and less side effects represents a priority in schizophrenia drug research. In this study, we present for the first time a preclinical exploration of the effects of the promising natural atypical antipsychotic Methyl-2-Amino-3- Methoxybenzoate (MAM), a brain-penetrable protoalkaloid from the seed of the plant Nigella damascena. Using animal models related to hyperdopaminergic activity, namely the pharmacogenetic apomorphine (D2/D1 receptor agonist)-susceptible (APO-SUS) rat model and pharmacologically induced mouse and rat models of schizophrenia, we found that MAM reduced gnawing stereotypy and climbing behaviours induced by dopaminergic agents. This predicts antipsychotic activity. In line, MAM antagonized apomorphine-induced c-Fos and NPAS4 mRNA levels in post-mortem brain nucleus accumbens and dorsolateral striatum of APO-SUS rats. Furthermore, phencyclidine (PCP, an NMDA receptor antagonist) and 2,5-Dimethoxy-4-iodoamphetamine (DOI, a 5HT2A/2C receptor agonist) induced prepulse inhibition deficits, reflecting the positive symptoms of schizophrenia, which were rescued by treatment with MAM and atypical antipsychotics alike. Post-mortem brain immunostaining revealed that MAM blocked the strong activation of both PCP- and DOI-induced c-Fos immunoreactivity in a number of cortical areas. Finally, during a 28-day subchronic treatment regime, MAM did not induce weight gain, hyperglycemia, hyperlipidemia or hepato- and nephrotoxic effects, side effects known to be induced by atypical antipsychotics. MAM also did not show any cataleptic effects. In conclusion, its brain penetrability, the apparent absence of preclinical side effects, and its ability to antagonize positive and cognitive symptoms associated with schizophrenia make MAM an exciting new antipsychotic drug that deserves clinical testing.


Asunto(s)
Antipsicóticos , Esquizofrenia , Ratas , Ratones , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Apomorfina/farmacología , Apomorfina/uso terapéutico , Éteres de Hidroxibenzoatos/uso terapéutico , Modelos Animales de Enfermedad , Cognición
3.
Br J Pharmacol ; 179(14): 3727-3739, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35174489

RESUMEN

BACKGROUND AND PURPOSE: It has been well established that glutamate in the nucleus accumbens (NAc) plays a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin transporter (SERT-/- rats) show increased cocaine intake reminiscent of compulsivity. EXPERIMENTAL APPROACH: By comparing SERT-/- to SERT+/+ rats, we investigated whether SERT deletion influences glutamate homeostasis under control conditions as well as after short access (ShA: 1 h per session) or long access (LgA: 6 h per session) to cocaine self-administration. Rats were killed at 24 h after the last self-administration session for ex vivo molecular analyses of the main determinants of the glutamate system, including transporters (vesicular and glial), receptors (main post-synaptic subunits of NMDA and AMPA receptors together with the metabotropic subunit mGLUR5), and scaffolding proteins (SAP102, SAP97, and GRIP) in the NAc shell (sNAc) KEY RESULTS: In cocaine-naive animals, SERT deletion was associated with changes indicative for a reduction in glutamate signalling. ShA and LgA exposure led to a further dysregulation of the glutamatergic synapse. CONCLUSION: SERT deletion may render the glutamatergic synapses of the NAc shell more responsive to both ShA and LgA intake of cocaine.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/metabolismo , Ratas , Autoadministración , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
4.
Br J Pharmacol ; 179(17): 4254-4264, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33880773

RESUMEN

BACKGROUND AND PURPOSE: It is well established that the nucleus accumbens and glutamate play a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin (5-HT) transporter (SERT-/- rats) show increased cocaine intake reminiscent of compulsivity. EXPERIMENTAL APPROACH: By comparing SERT-/- to SERT+/+ rats, we set out to explore whether SERT deletion influences glutamate neurotransmission under control conditions as well as after short access (1 h/session) or long access (6 h/session) to cocaine self-administration. KEY RESULTS: Rats were killed at 24 h after the final self-administration session for ex vivo molecular analyses of the glutamate system (vesicular and glial transporters, post-synaptic subunits of NMDA and AMPA receptors and their related scaffolding proteins). Such analyses were undertaken in the nucleus accumbens core. In cocaine-naïve animals, SERT deletion evoked widespread abnormalities in markers of glutamatergic neurotransmission that, overall, indicate a reduction of glutamate signalling. These results suggest that 5-HT is pivotal for the maintenance of accumbal glutamate homeostasis. We also found that SERT deletion altered glutamate homeostasis mainly after long access, but not short access, to cocaine. CONCLUSION AND IMPLICATIONS: Our findings reveal that SERT deletion may sensitize the glutamatergic synapses of the nucleus accumbens core to the long access but not short access, intake of cocaine. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Trastornos Relacionados con Cocaína/metabolismo , Ácido Glutámico/metabolismo , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sinapsis/metabolismo
5.
Neuroscience ; 469: 31-45, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34182055

RESUMEN

Serotonin transporter gene variance has long been considered an essential factor contributing to depression. However, meta-analyses yielded inconsistent findings recently, asking for further understanding of the link between the gene and depression-related symptoms. One key feature of depression is anhedonia. While data exist on the effect of serotonin transporter gene knockout (5-HTT-/-) in rodents on consummatory and anticipatory anhedonia, with mixed outcomes, the effect on decisional anhedonia has not been investigated thus far. Here, we tested whether 5-HTT-/- contributes to decisional anhedonia. To this end, we established a novel touchscreen-based go/go task of visual decision-making. During the learning of stimulus discrimination, 5-HTT+/+ rats performed more optimal decision-making compared to 5-HTT-/- rats at the beginning, but this difference did not persist throughout the learning period. During stimulus generalization, the generalization curves were similar between both genotypes and did not alter as the learning progress. Interestingly, the response time in 5-HTT+/+ rats increased as the session increased in general, while 5-HTT-/- rats tended to decrease. The response time difference might indicate that 5-HTT-/- rats altered willingness to exert cognitive effort to the categorization of generalization stimuli. These results suggest that the effect of 5-HTT ablation on decisional anhedonia is mild and interacts with learning, explaining the discrepant findings on the link between 5-HTT gene and depression.


Asunto(s)
Anhedonia , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Técnicas de Inactivación de Genes , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
6.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088660

RESUMEN

Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.


Asunto(s)
Trastorno Autístico , Proteínas de Unión al ADN , Animales , Trastorno Autístico/genética , Barrera Hematoencefálica/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Neuroglía/metabolismo , Calidad de Vida , Serotonina , Sueño , Factores de Transcripción/metabolismo
7.
Addict Biol ; 26(2): e12896, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187792

RESUMEN

Vulnerability to drug addiction relies on substantial individual differences. We previously demonstrated that serotonin transporter knockout (SERT-/- ) rats show increased cocaine intake and develop signs of compulsivity. However, the underlying neural mechanisms are not fully understood. Given the pivotal role of glutamate and prefrontal cortex in cocaine-seeking behavior, we sought to investigate the expression of proteins implicated in glutamate neurotransmission in the prefrontal cortex of naïve and cocaine-exposed rats lacking SERT. We focused on the infralimbic (ILc) and prelimbic (PLc) cortices, which are theorized to exert opposing effects on the control over subcortical brain areas. SERT-/- rats, which compared to wild-type (SERT+/+ ) rats show increased ShA and LgA intake short-access (ShA) and long-access (LgA) cocaine intake, were sacrificed 24 h into withdrawal for ex vivo molecular analyses. In the ILc homogenate of SERT-/- rats, we observed a sharp increase in glial glutamate transporter 1 (GLT-1) after ShA, but not LgA, cocaine intake. This was paralleled by ShA-induced increases in GluN1, GluN2A, and GluN2B NMDA receptor subunits and their scaffolding protein SAP102 in the ILc homogenate, but not postsynaptic density, of these knockout animals. In the PLc, we found no major changes in the homogenate; conversely, the expression of GluN1 and GluN2A NMDA receptor subunits was increased in the postsynaptic density under ShA conditions and reduced under LgA conditions. These results point to SERT as a critical regulator of glutamate homeostasis in a way that differs between the subregions investigated, the duration of cocaine exposure as well as the cellular compartment analyzed.


Asunto(s)
Cocaína/farmacología , Ácido Glutámico/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Animales , Masculino , Ratas , Transmisión Sináptica/efectos de los fármacos
8.
Front Behav Neurosci ; 14: 142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903627

RESUMEN

The serotonin transporter (SERT) gene, especially the short allele of the human serotonin transporter linked polymorphic region (5-HTTLPR), has been associated with the development of stress-related neuropsychiatric disorders. In line, exposure to early life stress in SERT knockout animals contributes to anxiety- and depression-like behavior. However, there is a lack of investigation of how early-life exposure to beneficial stimuli, such as tactile stimulation (TS), affects later life behavior in these animals. In this study, we investigated the effect of TS on social, anxiety, and anhedonic behavior in heterozygous SERT knockouts rats and wild-type controls and its impact on gene expression in the basolateral amygdala. Heterozygous SERT+/- rats were submitted to TS during postnatal days 8-14, for 10 min per day. In adulthood, rats were assessed for social and affective behavior. Besides, brain-derived neurotrophic factor (Bdnf) gene expression and its isoforms, components of glutamatergic and GABAergic systems as well as glucocorticoid-responsive genes were measured in the basolateral amygdala. We found that exposure to neonatal TS improved social and affective behavior in SERT+/- animals compared to naïve SERT+/- animals and was normalized to the level of naïve SERT+/+ animals. At the molecular level, we observed that TS per se affected Bdnf, the glucocorticoid-responsive genes Nr4a1, Gadd45ß, the co-chaperone Fkbp5 as well as glutamatergic and GABAergic gene expression markers including the enzyme Gad67, the vesicular GABA transporter, and the vesicular glutamate transporter genes. Our results suggest that exposure of SERT+/- rats to neonatal TS can normalize their phenotype in adulthood and that TS per se alters the expression of plasticity and stress-related genes in the basolateral amygdala. These findings demonstrate the potential effect of a supportive stimulus in SERT rodents, which are more susceptible to develop psychiatric disorders.

9.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824000

RESUMEN

Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.


Asunto(s)
Encéfalo/embriología , Desarrollo Fetal , Feto/metabolismo , Serotonina/metabolismo , Animales , Conducta Animal , Femenino , Feto/inmunología , Humanos , Embarazo , Estrés Fisiológico
10.
Br J Pharmacol ; 177(19): 4532-4547, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721055

RESUMEN

BACKGROUND AND PURPOSE: Amphetamine (AMPH) use disorder is a serious health concern, but, surprisingly, little is known about the vulnerability to the moderate and compulsive use of this psychostimulant and its underlying mechanisms. Previous research showed that inherited serotonin transporter (SERT) down-regulation increases the motor response to cocaine, as well as moderate (as measured during daily 1-h self-administration sessions) and compulsive (as measured during daily 6-h self-administration sessions) intake of this psychostimulant. Here, we sought to investigate whether these findings generalize to AMPH and the underlying mechanisms in the nucleus accumbens. EXPERIMENTAL APPROACH: In serotonin transporter knockout (SERT-/- ) and wild-type control (SERT+/+ ) rats, we assessed the locomotor response to acute AMPH and i.v. AMPH self-administration under short access (ShA: 1-h daily sessions) and long access (LgA: 6-h daily sessions) conditions. Twenty-four hours after AMPH self-administration, we analysed the expression of glutamate system components in the nucleus accumbens shell and core. KEY RESULTS: We found that SERT-/- animals displayed an increased AMPH-induced locomotor response and increased AMPH self-administration under LgA but not ShA conditions. Further, we observed changes in the vesicular and glial glutamate transporters, NMDA and AMPA receptor subunits, and their respective postsynaptic scaffolding proteins as function of SERT genotype and AMPH exposure (baseline, ShA, and LgA), specifically in the nucleus accumbens shell. CONCLUSION AND IMPLICATIONS: We demonstrate that SERT gene deletion increases the psychomotor and reinforcing effects of AMPH and that the latter is potentially mediated, at least in part, by homeostatic changes in the glutamatergic synapse of the nucleus accumbens shell and/or core.


Asunto(s)
Cocaína , Núcleo Accumbens , Anfetamina/farmacología , Animales , Ácido Glutámico , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
11.
Addict Biol ; 25(1): e12722, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30748070

RESUMEN

Excessive use of cocaine is known to induce changes in brain white and gray matter. It is unknown whether the extent of these changes is related to individual differences in vulnerability to cocaine addiction. One factor increasing vulnerability involves reduced expression of the serotonin transporter (5-HTT). Human studies have shown that inherited 5-HTT downregulation is associated with structural changes in the brain. These genotype-related structural changes may contribute to risk for cocaine addiction. Here, we tested this idea by using ultrahigh-resolution structural magnetic resonance imaging (MRI) on postmortem tissue of 5-HTT-/- and wild-type (5-HTT+/+ ) rats with a history of long access to cocaine or sucrose (control) self-administration. We found that 5-HTT-/- rats, compared with wild-type control animals, self-administered more cocaine, but not sucrose, under long-access conditions. Ultrahigh-resolution structural MRI subsequently revealed that, independent of sucrose or cocaine self-administration, 5-HTT-/- rats had a smaller amygdala. Moreover, we found an interaction between genotype and type of reward for dorsal raphe nucleus volume. The data point to an important but differential role of the amygdala and dorsal raphe nucleus in 5-HTT genotype-dependent vulnerability to cocaine addiction.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos Relacionados con Cocaína/patología , Cocaína/farmacología , Imagen por Resonancia Magnética/métodos , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Sacarosa/administración & dosificación , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/farmacología , Ratas , Autoadministración
12.
Brain Commun ; 1(1): fcz016, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667474

RESUMEN

The PTEN-induced putative kinase 1 knockout rat (Pink1-/-) is marketed as an established model for Parkinson's disease, characterized by development of motor deficits and progressive degeneration of half the dopaminergic neurons in the substantia nigra pars compacta by 8 months of age. In this study, we address our concerns about the reproducibility of the Pink1-/- rat model. We evaluated behavioural function, number of substantia nigra dopaminergic neurons and extracellular striatal dopamine concentrations by in vivo microdialysis. Strikingly, we and others failed to observe any loss of dopaminergic neurons in 8-month-old male Pink1-/- rats. To understand this variability, we compared key experimental parameters from the different studies and provide explanations for contradictory findings. Although Pink1-/- rats developed behavioural deficits, these could not be attributed to nigrostriatal degeneration as there was no loss of dopaminergic neurons in the substantia nigra and no changes in neurotransmitter levels in the striatum. To maximize the benefit of Parkinson's disease research and limit the unnecessary use of laboratory animals, it is essential that the research community is aware of the limits of this animal model. Additional research is needed to identify reasons for inconsistency between Pink1-/- rat colonies and why degeneration in the substantia nigra is not consistent.

13.
Brain Sci ; 9(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121975

RESUMEN

Adolescence is a developmental phase characterized by emotional turmoil and coincides with the emergence of affective disorders. Inherited serotonin transporter (5-HTT) downregulation in humans increases sensitivity to these disorders. To reveal whether and how 5-HTT gene variance affects fear-driven behavior in adolescence, we tested wildtype and serotonin transporter knockout (5-HTT-/-) rats of preadolescent, adolescent, and adult age for cued fear extinction and extinction recall. To analyze neural circuit function, we quantified inhibitory synaptic contacts and, through RT-PCR, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), and NDMA receptor subunits, in the medial prefrontal cortex (mPFC) and amygdala. Remarkably, the impaired recall of conditioned fear that characterizes preadolescent and adult 5-HTT-/- rats was transiently normalized during adolescence. This did not relate to altered inhibitory neurotransmission, since mPFC inhibitory immunoreactivity was reduced in 5-HTT-/- rats across all ages and unaffected in the amygdala. Rather, since mPFC (but not amygdala) c-Fos expression and NMDA receptor subunit 1 expression were reduced in 5-HTT-/- rats during adolescence, and since PFC c-Fos correlated negatively with fear extinction recall, the temporary normalization of fear extinction during adolescence could relate to altered plasticity in the developing mPFC.

14.
Addict Biol ; 24(3): 344-354, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29292566

RESUMEN

Counter-conditioning can be a valid strategy to reduce reinstatement of reward-seeking behavior. However, this has not been tested in laboratory animals with extended cocaine-taking backgrounds nor is it well understood, which individual differences may contribute to its effects. Here, we set out to investigate the influence of serotonin transporter (5-HTT) genotype on the effectiveness of counter-conditioning after extended access to cocaine self-administration. To this end, 5-HTT+/+ and 5-HTT-/- rats underwent a touch screen-based approach to test if reward-induced reinstatement of responding to a previously counter-conditioned cue is reduced, compared with a non-counter-conditioned cue, in a within-subject manner. We observed an overall extinction deficit of cocaine-seeking behavior in 5-HTT-/- rats and a resistance to punishment during the counter-conditioning session. Furthermore, we observed a significant decrease in reinstatement to cocaine and sucrose associated cues after counter-conditioning but only in 5-HTT+/+ rats. In short, we conclude that the paradigm we used was able to produce effects of counter-conditioning of sucrose seeking behavior in line with what is described in literature, and we demonstrate that it can be effective even after long-term exposure to cocaine, in a genotype-dependent manner.


Asunto(s)
Cocaína/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Recompensa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Análisis de Varianza , Animales , Señales (Psicología) , Extinción Psicológica , Ratas Endogámicas , Refuerzo en Psicología , Autoadministración , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología
15.
Addict Biol ; 24(6): 1167-1178, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30144237

RESUMEN

Serotonin (5-HT) and the habenula (Hb) contribute to motivational and emotional states such as depression and drug abuse. The dorsal raphe nucleus, where 5-HT neurons originate, and the Hb are anatomically and reciprocally interconnected. Evidence exists that 5-HT influences Hb glutamatergic transmission. Using serotonin transporter knockout (SERT-/- ) rats, which show depression-like behavior and increased cocaine intake, we investigated the effect of SERT reduction on expression of genes involved in glutamate neurotransmission under both baseline conditions as well as after short-access or long-access cocaine (ShA and LgA, respectively) intake. In cocaine-naïve animals, SERT removal led to reduced baseline Hb mRNA levels of critical determinants of glutamate transmission, such as SLC1A2, the main glutamate transporter and N-methyl-D-aspartate (Grin1, Grin2A and Grin2B) as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (Gria1 and Gria2) receptor subunits, with no changes in the scaffolding protein Dlg4. In response to ShA and LgA cocaine intake, SLC1A2 and Grin1 mRNA levels decreased in SERT+/+ rats to levels equal of those of SERT-/- rats. Our data reveal that increased extracellular levels of 5-HT modulate glutamate neurotransmission in the Hb, serving as critical neurobiological substrate for vulnerability to cocaine addiction.


Asunto(s)
Cocaína/administración & dosificación , Depresión/metabolismo , Inhibidores de Captación de Dopamina/administración & dosificación , Ácido Glutámico/metabolismo , Habénula/metabolismo , ARN Mensajero/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Homólogo 4 de la Proteína Discs Large/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/genética , Inhibidores de Captación de Dopamina/farmacología , Transportador 2 de Aminoácidos Excitadores/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ácido Glutámico/efectos de los fármacos , Habénula/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Ratas , Ratas Transgénicas , Receptores AMPA/efectos de los fármacos , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Autoadministración , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos
16.
Biol Psychiatry ; 83(12): 1024-1035, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29357981

RESUMEN

BACKGROUND: Reduced expression of the serotonin transporter (SERT) promotes anxiety and cocaine intake in both humans and rats. We tested the hypothesis that median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) serotonergic projections differentially mediate these phenotypes. METHODS: We used virally mediated RNA interference to locally downregulate SERT expression and compared the results with those of constitutive SERT knockout. Rats were allowed either short access (ShA) (1 hour) or long access (LgA) (6 hours) to cocaine self-administration to model moderate versus compulsive-like cocaine taking. RESULTS: SERT knockdown in the MRN increased cocaine intake selectively under ShA conditions and, like ShA cocaine self-administration, reduced corticotropin-releasing factor (CRF) immunodensity in the paraventricular nucleus of the hypothalamus. In contrast, SERT knockdown in the DRN increased cocaine intake selectively under LgA conditions and, like LgA cocaine self-administration, reduced CRF immunodensity in the central nucleus of the amygdala. SERT knockdown in the MRN or DRN produced anxiety-like behavior, as did withdrawal from ShA or LgA cocaine self-administration. The phenotype of SERT knockout rats was a summation of the phenotypes generated by MRN- and DRN-specific SERT knockdown. CONCLUSIONS: Our results highlight a differential role of serotonergic projections arising from the MRN and DRN in the regulation of cocaine intake. We propose that a cocaine-induced shift from MRN-driven serotonergic control of CRF levels in the hypothalamus to DRN-driven serotonergic control of CRF levels in the amygdala may contribute to the transition from moderate to compulsive intake of cocaine.


Asunto(s)
Anestésicos Locales/administración & dosificación , Cocaína/administración & dosificación , Conducta Compulsiva/patología , Núcleo Dorsal del Rafe/patología , Núcleos del Rafe Mesencefálico/patología , Neuronas Serotoninérgicas/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Anestésicos Locales/metabolismo , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Cocaína/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Motivación/efectos de los fármacos , Motivación/genética , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Autoadministración , Neuronas Serotoninérgicas/fisiología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Factores de Tiempo , Transducción Genética
17.
Expert Rev Neurother ; 17(2): 203-212, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27684102

RESUMEN

INTRODUCTION: Evidence based treatment for Substance use disorders (SUD) includes psychotherapy and pharmacotherapy. However, these are only partially effective. Hallucinogens, such as psilocybin, may represent potential new treatment options for SUD. This review provides a summary of (human) studies on the putative therapeutic effects of psilocybin, and discusses the receptor systems, brain regions and cognitive and emotional processes mediating psilocybin's effects. Psilocybin's chemical structure is similar to that of serotonin. Dysregulations in the serotonin system are associated with alterations in stress hormones, such as cortisol, and mood disorders. After psilocybin administration cortisol levels spike and activate the executive control network, with subsequent increased control over emotional processes, and relief of negative thinking and persistent negative emotions. Preliminary data of ongoing alcohol and smoking addiction studies in humans shows promising effects of psilocybin administration on substance use. Importantly, psilocybin has a low risk of toxicity and dependence and can be used safely under controlled clinical conditions. Areas covered: This paper is a narrative review based on the search terms: psilocybin, substance use disorder, addiction, depression, serotonin. Literature on potential efficacy and mechanisms of action of psilocybin in SUD is discussed. Expert commentary: Recent positive findings with psilocybin need confirmation in well-designed placebo controlled randomized trials employing a large sample size.


Asunto(s)
Alucinógenos , Psilocibina , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Depresión , Emociones/efectos de los fármacos , Alucinógenos/uso terapéutico , Humanos , Psilocibina/uso terapéutico , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/psicología
18.
Sci Rep ; 6: 34240, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27687783

RESUMEN

Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an animal model displaying schizophrenia-relevant features, the apomorphine-susceptible (APO-SUS) rat and its phenotypic counterpart, the apomorphine-unsusceptible (APO-UNSUS) rat at postnatal day 20-22. We found changes in the expression of the GABA-synthesizing enzyme GAD67 specifically in the prelimbic- but not the infralimbic region of the medial prefrontal cortex (mPFC), indicative of reduced inhibitory function in this region in APO-SUS rats. While we did not observe changes in basal synaptic transmission onto LII/III pyramidal cells in the mPFC of APO-SUS compared to APO-UNSUS rats, we report reduced paired-pulse ratios at longer inter-stimulus intervals. The GABAB receptor antagonist CGP 55845 abolished this reduction, indicating that the decreased paired-pulse ratio was caused by increased GABAB signaling. Consistently, we find an increased expression of the GABAB1 receptor subunit in APO-SUS rats. Our data provide physiological evidence for increased presynaptic GABAB signaling in the mPFC of APO-SUS rats, further supporting an important role for the GABAergic system in the pathophysiology of schizophrenia.

19.
J Neurosci ; 36(31): 8149-59, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27488635

RESUMEN

UNLABELLED: Cocaine exposure alters brain-derived neurotrophic factor (BDNF) expression in the brain. BDNF signaling through TrkB receptors differentially modulates cocaine self-administration, depending on the brain regions involved. In the present study, we determined how brain-wide inhibition of TrkB signaling affects cocaine intake, the motivation for the drug, and reinstatement of drug taking after extinction. To overcome the inability of TrkB ligands to cross the blood-brain barrier, the TrkB antagonist cyclotraxin-B was fused to the nontoxic transduction domain of the tat protein from human immunodeficiency virus type 1 (tat-cyclotraxin-B). Intravenous injection of tat-cyclotraxin-B dose-dependently reduced cocaine intake, motivation for cocaine (as measured under a progressive ratio schedule of reinforcement), and reinstatement of cocaine taking in rats allowed either short or long access to cocaine self-administration. In contrast, the treatment did not affect operant responding for a highly palatable sweet solution, demonstrating that the effects of tat-cyclotraxin-B are specific for cocaine reinforcement. Cocaine self-administration increased TrkB signaling and activated the downstream Akt pathway in the nucleus accumbens, and had opposite effects in the prefrontal cortex. Pretreatment with tat-cyclotraxin-B normalized protein levels in these two dopamine-innervated brain regions. Cocaine self-administration also increased TrkB signaling in the ventral tegmental area, where the dopaminergic projections originate, but pretreatment with tat-cyclotraxin-B did not alter this effect. Altogether, our data show that systemic administration of a brain-penetrant TrkB antagonist leads to brain region-specific effects and may be a potential pharmacological strategy for the treatment of cocaine addiction. SIGNIFICANCE STATEMENT: Brain-derived neurotrophic factor (BDNF) signaling through TrkB receptors plays a well established role in cocaine reinforcement. However, local manipulation of BDNF signaling yields divergent effects, depending on the brain region, thereby questioning the viability of systemic TrkB targeting for the treatment of cocaine use disorders. Our study provides first-time evidence that systemic administration of a brain-penetrant TrkB antagonist (tat-cyclotraxin-B) reduces several behavioral measures of cocaine dependence, without altering motor performance or reinforcement by a sweet palatable solution. In addition, although cocaine self-administration produced opposite effects on TrkB signaling in the nucleus accumbens and prefrontal cortex, tat-cyclotraxin-B administration normalized these cocaine-induced changes in both brain regions.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/prevención & control , Glicoproteínas de Membrana/antagonistas & inhibidores , Núcleo Accumbens/metabolismo , Péptidos Cíclicos/administración & dosificación , Corteza Prefrontal/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Inyecciones Intravenosas , Masculino , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/efectos de los fármacos , Péptidos Cíclicos/farmacocinética , Corteza Prefrontal/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Wistar , Receptor trkB , Autoadministración/métodos , Resultado del Tratamiento
20.
Addict Biol ; 20(1): 158-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24102978

RESUMEN

Although several lines of evidence have shown that chronic cocaine use is associated with stress system dysregulation, the underlying neurochemical mechanisms are still elusive. To investigate whether the rapid stress-induced response of the glutamatergic synapse was influenced by a previous history of cocaine, rats were exposed to repeated cocaine injections during adolescence [from postnatal day (PND) 28-42], subjected to a single swim stress (5 minutes) three days later (PND 45) and sacrificed 15 minutes after the end of this stressor. Critical determinants of glutamatergic homeostasis were measured in the medial prefrontal cortex (mPFC) whereas circulating corticosterone levels were measured in the plasma. Exposure to stress in saline-treated animals did not show changes in the crucial determinants of the glutamatergic synapse. Conversely, in cocaine-treated animals, stress dynamically altered the glutamatergic synapse by: (1) enhancing the presynaptic vesicular mediators of glutamate release; (2) reducing the transporters responsible for glutamate clearance; (3) increasing the postsynaptic responsiveness of the N-methyl-D-aspartate subunit GluN1; and (4) causing hyperresponsive spines as evidenced by increased activation of the postsynaptic cdc42-Pak pathway. These findings indicate that exposure to cocaine during adolescence sensitizes mPFC glutamatergic synapses to stress. It is suggested that changes in glutamatergic signaling may contribute to the increased sensitivity to stress observed in cocaine users. Moreover, glutamatergic processes may play an important role in stress-induced reinstatement of cocaine seeking.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Sinapsis/metabolismo , Animales , Corticosterona/sangre , Transportador 1 de Aminoácidos Excitadores/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Natación , Sinapsis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...