Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967226

RESUMEN

Robinow syndrome is a rare disease caused by variants of seven WNT pathway genes. Craniofacial features include widening of the nasal bridge and jaw hypoplasia. We used the chicken embryo to test whether two missense human FZD2 variants (1301G>T, p.Gly434Val; 425C>T, p.Pro142Lys) were sufficient to change frontonasal mass development. In vivo, the overexpression of retroviruses with wild-type or variant human FZD2 inhibited upper beak ossification. In primary cultures, wild-type and variant human FZD2 significantly inhibited chondrogenesis, with the 425C>T variant significantly decreasing activity of a SOX9 luciferase reporter compared to that for the wild type or 1301G>T. Both variants also increased nuclear shuttling of ß-catenin (CTNNB1) and increased the expression of TWIST1, which are inhibitory to chondrogenesis. In canonical WNT luciferase assays using frontonasal mass cells, the variants had dominant-negative effects on wild-type FZD2. In non-canonical assays, the 425C>T variant failed to activate the reporter above control levels and was unresponsive to exogenous WNT5A. This is the first single amino acid change to selectively alter ligand binding in a FZD receptor. Therefore, FZD2 missense variants are pathogenic and could lead to the altered craniofacial morphogenesis seen in Robinow syndrome.


Asunto(s)
Condrogénesis , Anomalías Craneofaciales , Receptores Frizzled , Animales , Embrión de Pollo , Humanos , Pico , beta Catenina/metabolismo , Núcleo Celular/metabolismo , Condrogénesis/genética , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Enanismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Deformidades Congénitas de las Extremidades , Cráneo/patología , Cráneo/embriología , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Anomalías Urogenitales , Vía de Señalización Wnt
2.
Artículo en Inglés | MEDLINE | ID: mdl-38760457
3.
Nat Commun ; 15(1): 3326, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637532

RESUMEN

Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Fosforilación , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinámicas Mitocondriales/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo
4.
Front Cell Dev Biol ; 11: 1214539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854071

RESUMEN

Homeodomain-interacting protein kinases (Hipks) regulate cell proliferation, apoptosis, and tissue development. Overexpression of Hipk in Drosophila causes tumorigenic phenotypes in larval imaginal discs. We find that depletion of Salt-inducible kinases Sik2 or Sik3 can suppress Hipk-induced overgrowth. Furthermore, co-expression of constitutively active forms of Sik2 or Sik3 with Hipk caused significant tissue hyperplasia and tissue distortion, indicating that both Sik2 and Sik3 can synergize with Hipk to promote tumorous phenotypes, accompanied by elevated dMyc, Armadillo/ß-catenin, and the Yorkie target gene expanded. Larvae expressing these hyperplastic growths also display an extended larval phase, characteristic of other Drosophila tumour models. Examination of total protein levels from fly tissues showed that Hipk proteins were reduced when Siks were depleted through RNAi, suggesting that Siks may regulate Hipk protein stability and/or activity. Conversely, expression of constitutively active Siks with Hipk leads to increased Hipk protein levels. Furthermore, Hipk can interact with Sik2 and Sik3 by co-immunoprecipitation. Co-expression of both proteins leads to a mobility shift of Hipk protein, suggesting it is post-translationally modified. In summary, our research demonstrates a novel function of Siks in synergizing with Hipk to promote tumour growth.

5.
Dis Model Mech ; 16(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36916233

RESUMEN

The study of rare genetic diseases provides valuable insights into human gene function. The autosomal dominant or autosomal recessive forms of Robinow syndrome are genetically heterogeneous, and the common theme is that all the mutations lie in genes in Wnt signaling pathways. Cases diagnosed with Robinow syndrome do survive to adulthood with distinct skeletal phenotypes, including limb shortening and craniofacial abnormalities. Here, we focus on mutations in dishevelled 1 (DVL1), an intracellular adaptor protein that is required for both canonical (ß-catenin-dependent) or non-canonical (requiring small GTPases and JNK) Wnt signaling. We expressed human wild-type DVL1 or DVL1 variants alongside the endogenous genome of chicken and Drosophila. This design is strategically suited to test for functional differences between mutant and wild-type human proteins in relevant developmental contexts. The expression of variant forms of DVL1 produced a major disorganization of cartilage and Drosophila wing morphology compared to expression of wild-type DVL1. Moreover, the variants caused a loss of canonical and gain of non-canonical Wnt signaling in several assays. Our data point to future therapies that might correct the levels of Wnt signaling, thus improving skeletal growth.


Asunto(s)
Pollos , Anomalías Craneofaciales , Proteínas Dishevelled , Drosophila , Animales , Humanos , Pollos/metabolismo , Anomalías Craneofaciales/genética , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Vía de Señalización Wnt/genética
6.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348663

RESUMEN

Six years ago, DMM launched a subject collection called 'Drosophila as a Disease Model'. This collection features Review-type articles and original research that highlight the power of Drosophila research in many aspects of human disease modeling. In the ensuing years, Drosophila research has further expanded to capitalize on genome editing, development of resources, and further interest in studying rare disease mechanisms. In the current issue of DMM, we again highlight the versatility, breadth, and scope of Drosophila research in human disease modeling and translational medicine. While many researchers have embraced the power of the fly, many more could still be encouraged to appreciate the strengths of Drosophila and how such research can integrate across species in a multi-pronged approach. Only when we truly acknowledge that all models contribute to our understanding of human biology, can we take advantage of the scope of current research endeavors.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila melanogaster/genética , Humanos
7.
Cells ; 11(3)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159258

RESUMEN

The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.


Asunto(s)
Drosophila melanogaster , Hexosaminas , Animales , Vías Biosintéticas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Eucromatina , Glutamina/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo
8.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34849772

RESUMEN

Homeodomain-interacting protein kinases (HIPKs) are a family of four conserved proteins essential for vertebrate development, as demonstrated by defects in the eye, brain, and skeleton that culminate in embryonic lethality when multiple HIPKs are lost in mice. While HIPKs are essential for development, functional redundancy between the four vertebrate HIPK paralogues has made it difficult to compare their respective functions. Because understanding the unique and shared functions of these essential proteins could directly benefit the fields of biology and medicine, we addressed the gap in knowledge of the four vertebrate HIPK paralogues by studying them in the fruit fly Drosophila melanogaster, where reduced genetic redundancy simplifies our functional assessment. The single hipk present in the fly allowed us to perform rescue experiments with human HIPK genes that provide new insight into their individual functions not easily assessed in vertebrate models. Furthermore, the abundance of genetic tools and established methods for monitoring specific developmental pathways and gross morphological changes in the fly allowed for functional comparisons in endogenous contexts. We first performed rescue experiments to demonstrate the extent to which each of the human HIPKs can functionally replace Drosophila Hipk for survival and morphological development. We then showed the ability of each human HIPK to modulate Armadillo/ß-catenin levels, JAK/STAT activity, proliferation, growth, and death, each of which have previously been described for Hipks, but never all together in comparable tissue contexts. Finally, we characterized novel developmental phenotypes induced by human HIPKs to gain insight to their unique functions. Together, these experiments provide the first direct comparison of all four vertebrate HIPKs to determine their roles in a developmental context.


Asunto(s)
Drosophila melanogaster , Proteínas de Homeodominio , Proteínas Quinasas , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Fosforilación , Proteínas Quinasas/metabolismo
9.
PLoS Genet ; 17(9): e1009774, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34492006

RESUMEN

Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these assays reproducible, scalable to high numbers of variants, and capable of assessing defined gene-disease mechanism for clinical interpretation aligned to the ClinGen Sequence Variant Interpretation (SVI) Working Group guidelines for 'well-established assays'. Drosophila melanogaster offers great potential as an assay platform, but was untested for high numbers of human variants adherent to these guidelines. Here, we wished to test the utility of Drosophila as a platform for scalable well-established assays. We took a genetic interaction approach to test the function of ~100 human PTEN variants in cancer-relevant suppression of PI3K/AKT signaling in cellular growth and proliferation. We validated the assay using biochemically characterized PTEN mutants as well as 23 total known pathogenic and benign PTEN variants, all of which the assay correctly assigned into predicted functional categories. Additionally, function calls for these variants correlated very well with our recent published data from a human cell line. Finally, using these pathogenic and benign variants to calibrate the assay, we could set readout thresholds for clinical interpretation of the pathogenicity of 70 other PTEN variants. Overall, we demonstrate that Drosophila offers a powerful assay platform for clinical variant interpretation, that can be used in conjunction with other well-established assays, to increase confidence in the accurate assessment of variant function and pathogenicity.


Asunto(s)
Proliferación Celular , Drosophila melanogaster/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Humanos , Transducción de Señal
10.
Dis Model Mech ; 14(7): 1-17, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34240146

RESUMEN

Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer.


Asunto(s)
Drosophila , Neoplasias , Animales , Glucólisis , Mitocondrias/metabolismo , Neoplasias/patología , Fosforilación Oxidativa
11.
J Cell Sci ; 133(23)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33199523

RESUMEN

Both functional and dysfunctional mitochondria are known to underlie tumor progression. Here, we establish use of the proto-oncogene Drosophila Homeodomain-interacting protein kinase (Hipk) as a new tool to address this paradox. We find that, in Hipk-overexpressing tumor-like cells, mitochondria accumulate and switch from fragmented to highly fused interconnected morphologies. Moreover, elevated Hipk promotes mitochondrial membrane hyperpolarization. These mitochondrial changes are at least in part driven by the upregulation of Myc. Furthermore, we show that the altered mitochondrial energetics, but not morphology, is required for Hipk-induced tumor-like growth, because knockdown of pdsw (also known as nd-pdsw; NDUFB10 in mammals; a Complex I subunit) abrogates the growth. Knockdown of ATPsynß (a Complex V subunit), which produces higher levels of reactive oxygen species (ROS) than pdsw knockdown, instead synergizes with Hipk to potentiate JNK activation and the downstream induction of matrix metalloproteinases. Accordingly, ATPsynß knockdown suppresses Hipk-induced tumor-like growth only when ROS scavengers are co-expressed. Together, our work presents an in vivo tumor model featuring the accumulation of hyperfused and hyperpolarized mitochondria, and reveals respiratory complex subunit-dependent opposing effects on tumorigenic outcomes.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Drosophila melanogaster , Neoplasias , Animales , Carcinogénesis , Drosophila melanogaster/genética , Mitocondrias/genética , Proteínas Quinasas , Especies Reactivas de Oxígeno
12.
EMBO Rep ; 21(9): e51358, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32820595

RESUMEN

Cells take advantage of cross-talk in signaling pathways to integrate diverse signals and produce coordinated responses. In this issue of EMBO Reports, Jeong et al discover that the Wnt co-receptor, low-density lipoprotein (LDL) receptor-related protein LRP6, negatively regulates Hippo signaling by serving as a binding sink to sequester and inhibit Merlin, an activator of Hippo signaling (Jeong et al, 2020). This regulation is nutrient-responsive, likely using LRP6 O-GlcNAcylation as a molecular switch.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Neurofibromina 2 , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Nutrientes , Transducción de Señal
13.
Nucleic Acids Res ; 48(10): 5254-5267, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32329781

RESUMEN

Guanine-rich, single-stranded DNAs and RNAs that fold to G-quadruplexes (GQs) are able to complex tightly with heme and display strongly enhanced peroxidase activity. Phenolic compounds are particularly good substrates for these oxidative DNAzymes and ribozymes; we recently showed that the use of biotin-tyramide as substrate can lead to efficient GQ self-biotinylation. Such biotinylated GQs are amenable to polymerase chain reaction amplification and should be useful for a relatively non-perturbative investigation of GQs as well as GQ-heme complexes within living cells. Here, we report that in mixed solutions of GQ and duplex DNA in vitro, GQ biotinylation is specifically >104-fold that of the duplex, even in highly concentrated DNA gels; that a three-quartet GQ is tagged by up to four biotins, whose attachment occurs more or less uniformly along the GQ but doesn't extend significantly into a duplex appended to the GQ. This self-biotinylation can be modulated or even abolished in the presence of strong GQ ligands that compete with heme. Finally, we report strong evidence for the successful use of this methodology for labeling DNA and RNA within live, freshly dissected Drosophila larval salivary glands.


Asunto(s)
Biotina/química , Biotinilación , ADN/química , G-Cuádruplex , Hemo/química , ARN/química , Animales , Secuencia de Bases , Biotina/análogos & derivados , Drosophila melanogaster , Ligandos , Masculino , Salmón , Espermatozoides , Tiramina/análogos & derivados , Tiramina/química
14.
PLoS One ; 15(3): e0221006, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32187190

RESUMEN

Homeodomain-interacting protein kinases (Hipks) have been previously associated with cell proliferation and cancer, however, their effects in the nervous system are less well understood. We have used Drosophila melanogaster to evaluate the effects of altered Hipk expression on the nervous system and muscle. Using genetic manipulation of Hipk expression we demonstrate that knockdown and over-expression of Hipk produces early adult lethality, possibly due to the effects on the nervous system and muscle involvement. We find that optimal levels of Hipk are critical for the function of dopaminergic neurons and glial cells in the nervous system, as well as muscle. Furthermore, manipulation of Hipk affects the structure of the larval neuromuscular junction (NMJ) by promoting its growth. Hipk regulates the phosphorylation of the synapse-associated cytoskeletal protein Hu-li tai shao (Hts; adducin in mammals) and modulates the expression of two important protein kinases, Calcium-calmodulin protein kinase II (CaMKII) and Partitioning-defective 1 (PAR-1), all of which may alter neuromuscular structure/function and influence lethality. Hipk also modifies the levels of an important nuclear protein, TBPH, the fly orthologue of TAR DNA-binding protein 43 (TDP-43), which may have relevance for understanding motor neuron diseases.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/enzimología , Drosophila melanogaster/fisiología , Músculos/anatomía & histología , Músculos/metabolismo , Sistema Nervioso/anatomía & histología , Sistema Nervioso/metabolismo , Proteínas Quinasas/aislamiento & purificación , Animales , Tipificación del Cuerpo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Ojo/embriología , Larva/metabolismo , Masculino , Músculos/citología , Sistema Nervioso/citología , Unión Neuromuscular/metabolismo , Tamaño de los Órganos , Fosforilación , Sinapsis/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(4): 2004-2013, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932432

RESUMEN

Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.


Asunto(s)
Carcinogénesis/patología , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Glucosa/farmacología , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Acetilglucosamina/metabolismo , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Proteínas Portadoras/genética , Proliferación Celular , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Células HEK293 , Humanos , Células MCF-7 , Ratones , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Edulcorantes/farmacología
16.
Elife ; 82019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259690

RESUMEN

Cancer cells usually exhibit aberrant cell signaling and metabolic reprogramming. However, mechanisms of crosstalk between these processes remain elusive. Here, we show that in an in vivo tumor model expressing oncogenic Drosophila Homeodomain-interacting protein kinase (Hipk), tumor cells display elevated aerobic glycolysis. Mechanistically, elevated Hipk drives transcriptional upregulation of Drosophila Myc (dMyc; MYC in vertebrates) likely through convergence of multiple perturbed signaling cascades. dMyc induces robust expression of pfk2 (encoding 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PFKFB in vertebrates) among other glycolytic genes. Pfk2 catalyzes the synthesis of fructose-2,6-bisphosphate, which acts as a potent allosteric activator of Phosphofructokinase (Pfk) and thus stimulates glycolysis. Pfk2 and Pfk in turn are required to sustain dMyc protein accumulation post-transcriptionally, establishing a positive feedback loop. Disruption of the loop abrogates tumorous growth. Together, our study demonstrates a reciprocal stimulation of Myc and aerobic glycolysis and identifies the Pfk2-Pfk governed committed step of glycolysis as a metabolic vulnerability during tumorigenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retroalimentación Fisiológica , Glucólisis , Neoplasias/metabolismo , Neoplasias/patología , Factores de Transcripción/metabolismo , Aerobiosis , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucólisis/genética , Especificidad de Órganos , Proteínas Quinasas/metabolismo , Transducción de Señal , Regulación hacia Arriba/genética
17.
PLoS One ; 14(12): e0226856, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891940

RESUMEN

Drosophila has been instrumental as a model system in studying signal transduction and revealing molecular functions in development and human diseases. A point mutation in the Drosophila Janus kinase JAK (called hop) causes constitutive activation of the JAK/STAT pathway. We provide robust genetic evidence that the Homeodomain interacting protein kinase (Hipk) is required for endogenous JAK/STAT activity. Overexpression of Hipk can phenocopy the effects of overactive JAK/STAT mutations and lead to melanized tumors, and loss of Hipk can suppress the effects of hyperactive JAK/STAT. Further, the loss of the pathway effector Stat92E can suppress Hipk induced overgrowth. Interaction studies show that Hipk can physically interact with Stat92E and regulate Stat92E subcellular localization. Together our results show that Hipk is a novel factor required for effective JAK/STAT signaling.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Quinasas Janus/metabolismo , Proteínas Quinasas/fisiología , Factores de Transcripción/metabolismo , Animales , Carcinogénesis/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas/genética
18.
Mol Biol Cell ; 30(3): 411-426, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540525

RESUMEN

Actomyosin contractility can influence the canonical Wnt signaling pathway in processes like mesoderm differentiation and tissue stiffness during tumorigenesis. We identified that increased nonmuscle myosin II activation and cellular contraction inhibited Wnt target gene transcription in developing Drosophila imaginal disks. Genetic interactions studies were used to show that this effect was due to myosin-induced accumulation of cortical F-actin resulting in clustering and accumulation of E-cadherin to the adherens junctions. This results in E-cadherin titrating any available ß-catenin, the Wnt pathway transcriptional coactivator, to the adherens junctions in order to maintain cell-cell adhesion under contraction. We show that decreased levels of cytoplasmic ß-catenin result in insufficient nuclear translocation for full Wnt target gene transcription. Previous studies have identified some of these interactions, but we present a thorough analysis using the wing disk epithelium to show the consequences of modulating myosin phosphatase. Our work elucidates a mechanism in which the dynamic promotion of actomyosin contractility refines patterning of Wnt transcription during development and maintenance of epithelial tissue in organisms.


Asunto(s)
Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Drosophila melanogaster/metabolismo , Vía de Señalización Wnt , Actinas/metabolismo , Animales , Proteínas del Dominio Armadillo/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Proteínas de Drosophila/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Miosina Tipo II/metabolismo , Estabilidad Proteica , Factores de Transcripción/metabolismo
19.
PLoS Genet ; 14(5): e1007343, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750785

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1005810.].

20.
Dis Model Mech ; 11(1)2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29208636

RESUMEN

Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. Previous work has shown that Drosophila Hipk is a potent growth regulator, thus we predicted that it could have a role in tumorigenesis. In our study of Hipk-induced phenotypes, we observed the formation of tumor-like structures in multiple cell types in larvae and adults. Furthermore, elevated Hipk in epithelial cells induces cell spreading, invasion and epithelial-to-mesenchymal transition (EMT) in the imaginal disc. Further evidence comes from cell culture studies, in which we expressed Drosophila Hipk in human breast cancer cells and showed that it enhances proliferation and migration. Past studies have shown that Hipk can promote the action of conserved pathways implicated in cancer and EMT, such as Wnt/Wingless, Hippo, Notch and JNK. We show that Hipk phenotypes are not likely to arise from activation of a single target, but rather through a cumulative effect on numerous target pathways. Most Drosophila tumor models involve mutations in multiple genes, such as the well-known RasV12 model, in which EMT and invasiveness occur after the additional loss of the tumor suppressor gene scribble. Our study reveals that elevated levels of Hipk on their own can promote both hyperproliferation and invasive cell behavior, suggesting that Hipk family members could be potent oncogenes and drivers of EMT.


Asunto(s)
Carcinogénesis/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas Quinasas/metabolismo , Animales , Membrana Basal/metabolismo , Membrana Basal/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Hemocitos/metabolismo , Hemocitos/patología , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Fenotipo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...