Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 31(1): 114-9, 2014 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23999132

RESUMEN

Crude glycerol is a promising renewable feedstock in bioconversion processes for the production of fuels and chemicals. Impurities present in crude glycerol can however, negatively impact the fermentation process. Successful crude glycerol utilization requires robust microbial production hosts that tolerate and preferably, can utilize such impurities. We investigated utilization of crude, unpurified glycerol as a substrate for the production of aromatic compounds by solvent tolerant Pseudomonas putida S12. In high-cell density fed-batch fermentations, P. putida S12 surprisingly performed better on crude glycerol than on purified glycerol. By contrast, growth of Escherichia coli was severely compromised under these high cell density cultivation conditions on crude glycerol. For P. putida S12 the biomass-to-substrate yield, maximum biomass production rate and substrate uptake rate were consistently higher on crude glycerol. Moreover, production of p-hydroxybenzoate by engineered P. putida S12palB5 on crude glycerol showed a 10% yield improvement over production on purified glycerol. P. putida S12 is a favorable host for bioconversion processes utilizing crude glycerol as a substrate. Its intrinsic stress-tolerance properties provide the robustness required for efficient growth and metabolism on this renewable substrate.


Asunto(s)
Glicerol/farmacología , Parabenos/metabolismo , Pseudomonas putida/crecimiento & desarrollo , Solventes/farmacología , Escherichia coli/crecimiento & desarrollo , Glicerol/metabolismo , Solventes/metabolismo
2.
Appl Microbiol Biotechnol ; 90(3): 885-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21287166

RESUMEN

The key precursors for p-hydroxybenzoate production by engineered Pseudomonas putida S12 are phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), for which the pentose phosphate (PP) pathway is an important source. Since PP pathway fluxes are typically low in pseudomonads, E4P and PEP availability is a likely bottleneck for aromatics production which may be alleviated by stimulating PP pathway fluxes via co-feeding of pentoses in addition to glucose or glycerol. As P. putida S12 lacks the natural ability to utilize xylose, the xylose isomerase pathway from E. coli was introduced into the p-hydroxybenzoate producing strain P. putida S12palB2. The initially inefficient xylose utilization was improved by evolutionary selection after which the p-hydroxybenzoate production was evaluated. Even without xylose-co-feeding, p-hydroxybenzoate production was improved in the evolved xylose-utilizing strain, which may indicate an intrinsically elevated PP pathway activity. Xylose co-feeding further improved the p-hydroxybenzoate yield when co-fed with either glucose or glycerol, up to 16.3 Cmol% (0.1 g p-hydroxybenzoate/g substrate). The yield improvements were most pronounced with glycerol, which probably related to the availability of the PEP precursor glyceraldehyde-3-phosphate (GAP). Thus, it was demonstrated that the production of aromatics such as p-hydroxybenzoate can be improved by co-feeding different carbon sources via different and partially artificial pathways. Moreover, this approach opens new perspectives for the efficient production of (fine) chemicals from renewable feedstocks such as lignocellulose that typically has a high content of both glucose and xylose and (crude) glycerol.


Asunto(s)
Ingeniería Genética , Microbiología Industrial/métodos , Parabenos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fermentación , Glucosa/metabolismo , Pentosas/metabolismo , Xilosa/metabolismo
3.
Appl Microbiol Biotechnol ; 87(2): 679-90, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20449741

RESUMEN

A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which--a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273--was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells.


Asunto(s)
Perfilación de la Expresión Génica , Parabenos/metabolismo , Proteómica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Appl Environ Microbiol ; 75(4): 931-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19060171

RESUMEN

Two solvent-tolerant Pseudomonas putida S12 strains, originally designed for phenol and p-coumarate production, were engineered for efficient production of p-hydroxystyrene from glucose. This was established by introduction of the genes pal and pdc encoding L-phenylalanine/L-tyrosine ammonia lyase and p-coumaric acid decarboxylase, respectively. These enzymes allow the conversion of the central metabolite L-tyrosine into p-hydroxystyrene, via p-coumarate. Degradation of the p-coumarate intermediate was prevented by inactivating the fcs gene encoding feruloyl-coenzyme A synthetase. The best-performing strain was selected and cultivated in the fed-batch mode, resulting in the formation of 4.5 mM p-hydroxystyrene at a yield of 6.7% (C-mol of p-hydroxystyrene per C-mol of glucose) and a maximum volumetric productivity of 0.4 mM h(-1). At this concentration, growth and production were completely halted due to the toxicity of p-hydroxystyrene. Product toxicity was overcome by the application of a second phase of 1-decanol to extract p-hydroxystyrene during fed-batch cultivation. This resulted in a twofold increase of the maximum volumetric productivity (0.75 mM h(-1)) and a final total p-hydroxystyrene concentration of 21 mM, which is a fourfold improvement compared to the single-phase fed-batch cultivation. The final concentration of p-hydroxystyrene in the water phase was 1.2 mM, while a concentration of 147 mM (17.6 g liter(-1)) was obtained in the 1-decanol phase. Thus, a P. putida S12 strain producing the low-value compound phenol was successfully altered for the production of the toxic value-added compound p-hydroxystyrene.


Asunto(s)
Medios de Cultivo/química , Ácidos Decanoicos/química , Glucosa/metabolismo , Poliestirenos/metabolismo , Pseudomonas putida/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Fermentación , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Biotechnol ; 132(1): 49-56, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17900735

RESUMEN

Pseudomonas putida strain S12palB1 was constructed that produces p-hydroxybenzoate from renewable carbon sources via the central metabolite l-tyrosine. P. putida S12palB1 was based on the platform strain P. putida S12TPL3, which has an optimised carbon flux towards l-tyrosine. Phenylalanine ammonia lyase (Pal) was introduced for the conversion of l-tyrosine into p-coumarate, which is further converted into p-hydroxybenzoate by endogenous enzymes. p-Hydroxybenzoate hydroxylase (PobA) was inactivated to prevent the degradation of p-hydroxybenzoate. These modifications resulted in stable accumulation of p-hydroxybenzoate at a yield of 11% (C-molC-mol(-1)) on glucose or on glycerol in shake flask cultures. In a glycerol-limited fed-batch fermentation, a final p-hydroxybenzoate concentration of 12.9mM (1.8gl(-1)) was obtained, at a yield of 8.5% (C-molC-mol(-1)). A 2-fold increase of the specific p-hydroxybenzoate production rate (q(p)) was observed when l-tyrosine was supplied to a steady-state C-limited chemostat culture of P. putida S12palB1. This implied that l-tyrosine availability was the bottleneck for p-hydroxybenzoate production under these conditions. When p-coumarate was added instead, q(p) increased by a factor 4.7, indicating that Pal activity is the limiting factor when sufficient l-tyrosine is available. Thus, two major leads for further improvement of the p-hydroxybenzoate production by P. putida S12palB1 were identified.


Asunto(s)
Parabenos/metabolismo , Pseudomonas putida/metabolismo , Secuencia de Bases , Reactores Biológicos , Biotecnología , Cartilla de ADN/genética , ADN Bacteriano/genética , Fermentación , Cinética , Fenilanina Amoníaco-Liasa/metabolismo , Plásmidos/genética , Pseudomonas putida/genética , Solventes , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA