Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 49(48): 17674-17682, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33232405

RESUMEN

A family of polydentate pyridine-substituted pyridylidene amide (PYA) complexes bound to iron(ii) was developed. The variation of the coordination set from NN-bidentate PYA to tridentate pincer-type pyPYA2 systems (pyPYA2 = 2,6-bis(PYA)pyridine) had a large influence on the binding mode to iron(ii), including a change from the N- to rare O-coordination of the PYA site and a concomitant shift of the predominant ligand resonance structure. These binding mode variations invoke changes in the reactivity of the complexes, which were probed in the peroxide-mediated oxidation of 1-phenylethanol to acetophenone. A comparison with uncomplexed FeCl2 indicated that bidentate NN coordination is unstable and presumably leads to the dissociation of FeCl2. In contrast, the tridentate ligand binding is robust. Remarkably, the tridentate PYA pincer coordination inhibits catalytic activity in the NNN binding mode, while the ONO coordination greatly enhances catalytic performance. Under optimized conditions, the bis-ligated ONO pincer iron complex [Fe(pyPYA2)2][2PF6] reaches full conversion within one hour (0.5 mol% catalyst loading) and under dilute conditions turnover numbers over 20 000 (0.005 mol% catalyst loading).

2.
Eur J Inorg Chem ; 2019(5): 660-667, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31007578

RESUMEN

The hydrosilylation of unsaturated compounds homogeneously catalyzed by cobalt complexes has gained considerable attention in the last years, aiming at substituting precious metal-based catalysts. In this study, the catalytic activity of well-characterized CoII and CoI complexes of the pToldpbp ligand is demonstrated in the hydrosilylation of 1-octene with phenylsilane. The CoI complex is the better precatalyst for the mentioned reaction under mild conditions, at 1 mol-% catalyst, 1 h, room temperature, and without solvent, yielding 84 % of octylphenylsilane. Investigation of the substrate scope shows lower performance of the catalyst in styrene hydrosilylation, but excellent results with allylbenzene (84 %) and acetophenone (> 99 %). This catalytic study contributes to the field of cobalt-catalyzed hydrosilylation reactions and shows the first example of catalysis employing the dpbp ligand in combination with a base metal.

3.
Inorg Chem ; 57(17): 10846-10856, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30113165

RESUMEN

Ligands that can adapt their coordination mode to the electronic properties of a metal center are of interest to support catalysis or small molecule activation processes. In this context, the ability of imine moieties to bind in either an η1(N)-fashion via σ-donation of the lone pair or, less commonly, in an η2(C,N)-fashion via π-coordination is potentially attractive for the design of new metal-ligand cooperative systems. Herein, the coordination chemistry of chelating ligands with a diphosphine imine framework (PCNP) to nickel is investigated. The imine moiety binds in an η1(N)-fashion in a Ni(II)Cl2 complex. The uncommon η2(C,N)-interaction is obtained in Ni(0) complexes in the presence of a PPh3 coligand. Increasing the bulk on the phosphine side-arms in the Ni(0) complexes, by substituting phenyl for o-tolyl groups, leads to a distinct binding mode in which only one of the phosphorus atoms is coordinated. In the absence of a coligand, a mixture of two different dimeric Ni(0) complexes is formed. In one of them, the imine adopts an uncommon η1(N)η2(C,N) bridging mode of the ligand to nickel, while the second one may involve reactivity on the ligand by the formation of a new C-C bond by oxidative coupling. The latter is supported by the isolation and structural characterization of a crystalline bis-CO derivative featuring a C-C bond formed by oxidative coupling of two imine moieties.

4.
Chemistry ; 24(20): 5163-5172, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29077236

RESUMEN

π-Coordinating ligands are commonly found in intermediate structures in homogeneous catalysis, and are gaining interest as supporting ligands for the development of cooperative catalysts. Herein, we systematically investigate the binding of the ketone group, a strongly accepting π ligand, to mid-to-late metals of the first transition series. To this end, the coordination of 2,2'-bis(diphenylphosphino)benzophenone (Ph dpbp), which features a ketone moiety flanked by two strongly binding P-donor groups, to Fe, Co, Ni, and Cu was explored. The ketone moiety does not bind to the metal in MII complexes, whereas MI complexes (Fe, Co, Ni) adopt an η2 (C,O) coordination. A structural and computational investigation of periodic trends in this series was performed. These data suggest that the coordination of the ketone to MI can mostly be described by the resonance extremes of the Dewar-Chatt-Duncanson model, that is, the π complex and the metallaoxacycle extreme, with a possible minor contribution from a ketyl radical resonance structure in the case of the iron complex.

5.
Dalton Trans ; 45(40): 15762-15778, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27460960

RESUMEN

Metal-ligand cooperativity in homogeneous catalysis is emerging as a powerful tool for the design of efficient transition-metal catalysts. This perspective highlights recent advances in the use of neutral π-coordinating ligands, tethered to a transition-metal center by other donor ligands, as cooperative reaction centers. The state-of-the-art organometallic complexes, including π-coordinating ligands originating from C[double bond, length as m-dash]C, C[double bond, length as m-dash]E (E = O, N) and boron containing moieties, are described here, with special attention on their specific reactivity. Geometric and electronic aspects of ligand design and their influence on the coordination mode and reactivity of the π-system are discussed.

6.
Chemistry ; 21(44): 15676-85, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26346291

RESUMEN

A series of Grubbs-type catalysts that contain lipase-inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently bound to the active amino acid residue of the enzyme host in an orthogonal orientation. Differences in reactivity as well as accessibility of the active site by the functionalized inhibitor became evident through variation of the anchoring motif and substituents on the N-heterocyclic carbene ligand. Such observations led to the design of a hybrid that is active in the ring-closing metathesis and the cross-metathesis of N,N-diallyl-p-toluenesulfonamide and allylbenzene, respectively, the latter being the first example of its kind in the field of artificial metalloenzymes.


Asunto(s)
Alquenos/química , Compuestos Alílicos/química , Derivados del Benceno/química , Lipasa/química , Metaloproteínas/química , Rutenio/química , Materiales Biomiméticos , Catálisis , Dominio Catalítico , Lipasa/metabolismo , Metaloproteínas/metabolismo , Hibridación de Ácido Nucleico , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...