Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 10: 1184277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720467

RESUMEN

Little information is available on age- and creep-feeding-related microbial and immune development in neonatal piglets. Therefore, we explored age- and gut-site-specific alterations in the microbiome, metabolites, histo-morphology, and expression of genes for microbial signaling, as well as immune and barrier function in suckling and newly weaned piglets that were receiving sow milk only or were additionally offered creep feed from day of life (DoL) 10. The experiment was conducted in two replicate batches. Creep feed intake was estimated at the litter level. Piglets were weaned on day 28 of life. Gastric and cecal digesta and jejunal and cecal tissue were collected on DoL 7, 14, 21, 28, 31, and 35 for microbial and metabolite composition, histomorphology, and gene expression. In total, results for 10 piglets (n = 5/sex) per dietary group (sow milk only versus additional creep feed) were obtained for each DoL. The creep feed intake was low at the beginning and only increased in the fourth week of life. Piglets that were fed creep feed had less lactate and acetate in gastric digesta on DoL 28 compared to piglets fed sow milk only (p < 0.05). Age mainly influenced the gastric and cecal bacteriome and cecal mycobiome composition during the suckling phase, whereas the effect of creep feeding was small. Weaning largely altered the microbial communities. For instance, it reduced gastric Lactobacillaceae and cecal Bacteroidaceae abundances and lowered lactate and short-chain fatty acid concentrations on DoL 31 (p < 0.05). Jejunal and cecal expression of genes related to microbial and metabolite signaling, and innate immunity showed age-related patterns that were highest on DoL 7 and declined until DoL 35 (p < 0.05). Weaning impaired barrier function and enhanced antimicrobial secretion by lowering the expression of tight junction proteins and stimulating goblet cell recruitment in the jejunum and cecum (p < 0.05). Results indicated that age-dependent alterations, programmed genetically and by the continuously changing gut microbiome, had a strong impact on the expression of genes for gut barrier function, integrity, innate immunity, and SCFA signaling, whereas creep feeding had little influence on the microbial and host response dynamics at the investigated gut sites.

2.
Animals (Basel) ; 13(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37508029

RESUMEN

Feces enable frequent samplings for the same animal, which is valuable in studies investigating the development of the gut microbiome in piglets. Creep feed should prepare the piglet's gut for the postweaning period and shape the microbiome accordingly. Little is known about the variation that is caused by differences in fecal color and consistency and different sample types (feces versus swab samples). Therefore, this study evaluated the age-related alterations in the microbiome composition (16S rRNA gene) in feces of suckling and newly weaned piglets in the context of nutrition and fecal consistency, color and sample type from day 2 to 34 of life. Feces from 40 healthy piglets (2 each from 20 litters) were collected on days 2, 6, 13, 20, 27, 30 and 34. Weaning occurred on day 28. Half of the litters only drank sow milk during the suckling phase, whereas the other half had access to creep feed from day 10. Creep feeding during the suckling phase influenced the age-related total bacterial and archaeal abundances but had less of an influence on the relative bacterial composition. Results further showed different taxonomic compositions in feces of different consistency, color and sample type, emphasizing the need to consider these characteristics in comprehensive microbiome studies.

3.
Anim Biosci ; 36(5): 740-752, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36397701

RESUMEN

OBJECTIVE: Dietary phytase increases bioavailability of phytate-bound phosphorus (P) in pig nutrition affecting dietary calcium (Ca) to P ratio, intestinal uptake, and systemic utilization of both minerals, which may contribute to improper bone mineralization. We used phytase to assess long-term effects of two dietary available P (aP) levels using a one-phase feeding system on gene expression related to Ca and P homeostasis along the intestinal tract and in the kidney, short-chain fatty acids in stomach, cecum, and colon, serum, and bone parameters in growing gilts and barrows. METHODS: Growing pigs (37.9±6.2 kg) had either free access to a diet without (Con; 75 gilts and 69 barrows) or with phytase (650 phytase units; n = 72/diet) for 56 days. Samples of blood, duodenal, jejunal, ileal, cecal, and colonic mucosa and digesta, kidney, and metacarpal bones were collected from 24 pigs (6 gilts and 6 barrows per diet). RESULTS: Phytase decreased daily feed intake and average daily gain, whereas aP intake increased with phytase versus Con diet (p<0.05). Gilts had higher colonic expression of TRPV5, CDH1, CLDN4, ZO1, and OCLN and renal expression of TRPV5 and SLC34A3 compared to barrows (p<0.05). Phytase increased duodenal expression of TRPV5, TRPV6, CALB1, PMCA1b, CDH1, CLDN4, ZO1, and OCLN compared to Con diet (p<0.05). Furthermore, phytase increased expression of SCL34A2 in cecum and of FGF23 and CLDN4 in colon compared to Con diet (p<0.05). Alongside, phytase decreased gastric propionate, cecal valerate, and colonic caproate versus Con diet (p<0.05). Phytase reduced cortical wall thickness and index of metacarpal bones (p<0.05). CONCLUSION: Gene expression results suggested an intestinal adaptation to increased dietary aP amount by increasing duodenal trans- and paracellular Ca absorption to balance the systemically available Ca and P levels, whereas no adaption of relevant gene expression in kidney occurred. Greater average daily gain in barrows related to higher feed intake.

4.
Front Vet Sci ; 9: 859124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664846

RESUMEN

In the recent years, safety concerns regarding the administration of probiotics led to an increased interest in developing inactivated probiotics, also called "paraprobiotics". Gamma irradiation represents a promising tool that can be used to produce safe paraprobiotics by inhibiting replication while preserving the structure, the metabolic activity, and the immunogenicity of bacteria. In this study, we evaluated the ability of four strains of lactic acid bacteria (LAB: Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, and Lacticaseibacillus paracasei) in preserving the metabolic activity and the immune modulation of swine porcine peripheral blood mononuclear cells, after gamma irradiation or heat inactivation. Our results show that all four strains retained the metabolic activity following gamma irradiation but not after heat inactivation. In terms of immune-modulatory capacity, irradiated L. acidophilus and Lc. paracasei were able to maintain an overall gene expression pattern similar to their live state, as heat inactivation did with Lc. casei. Moreover, we show that the two inactivation methods applied to the same strain can induce an opposed expression of key genes involved in pro-inflammatory response (e.g., IFNα and interleukin-6 for Lc. casei), whereas gamma irradiation of L. acidophilus and Lc. paracasei was able to induce a downregulation of the anti-inflammatory TGFß. Taken together, our data show that immune modulation can be impacted not only by different inactivation methods but also by the strain of LAB selected. This study highlights that gamma irradiation harbors the potential to produce safe non-replicative metabolically active LAB and identifies immunomodulatory capacities that may be applied as vaccine adjuvants.

5.
Transl Anim Sci ; 5(2): txab059, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34222820

RESUMEN

Adequate provision of calcium (Ca) and phosphorus (P) is essential for bone formation and high growth performance in pigs. Nevertheless, reliable serum biomarkers for pig's Ca and P intake are still missing. Here, we used phytase supplementation to alter the dietary available P (aP) level in order to investigate the effect of differences in dietary aP levels on serum parameters related to the Ca and P homeostasis in pigs. Moreover, we assessed whether serum parameters can be used to predict the Ca, total P (tP), and aP intake in barrows and gilts throughout the fattening period. In total, 216 pigs (115 gilts and 101 barrows) were randomly allotted to one of the two diets in three replicate batches, each lasting 56 d (n = 108/diet). Pigs had free access to the diets without (Con) or with phytase (Phy; 650 phytase units/kg) via a transponder-based feeding system. Blood samples were collected on days 2, 23, and 52, and serum parameters were correlated with the daily Ca, tP, and aP intake. The intake of tP, aP, and Ca was overall 14.2%, 13.8%, and 14.2% higher in barrows compared with gilts, respectively (P < 0.001). Concurrently, phytase decreased the intake of tP and Ca by 8.4% and 6.7%, respectively, whereas it raised the intake of aP by 16.3% compared with the Con diet (P < 0.001). Serum levels of fibroblast growth factor 23, alkaline phosphatase (ALP), vitamin D (VitD), and osteocalcin (OCN) decreased with age (P < 0.05). The higher aP intake of pigs fed the Phy diet increased serum P on days 2 and 23 but decreased it on day 52 compared with the Con diet (P = 0.004). Pigs fed the Phy diet had higher serum ALP compared with pigs fed the Con diet on days 23 and 52 (P < 0.05). Correlation analysis between serum parameters and Ca, tP, and aP intake showed age- and sex-related associations. With 12 wk of age, serum P in both sexes, serum VitD in barrows, and serum OCN and ALP in gilts correlated with aP intake (|r| > 0.38), whereas serum OCN correlated with Ca in both sexes' intake (r > 0.50). At 20 wk, serum Ca and ALP in gilts correlated with aP intake, whereas serum P, Ca, and VitD correlated with Ca intake in both sexes (|r| > 0.39). In conclusion, the present results showed that the daily Ca and aP intake could be most reliably estimated from serum parameters for an approximate age of 12 and 20 wk. Serum P and the Ca:P ratio at 12 wk of age and serum VitD at 20 wk of age may be used to predict pig's daily aP intake in both sexes.

6.
Porcine Health Manag ; 6(1): 38, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33292668

RESUMEN

BACKGROUND: Mycoplasma hyorhinis is an invader of the upper respiratory tract in swine that is considered to have ubiquitous distribution. It is mainly known for causing polyserositis and polyarthritis in weaned piglets, even though the mechanisms of systemic spread are not fully understood. Mycoplasma hyorhinis has also been associated with other diseases in pigs such as pneumonia or otitis media, but so far has not been known to cause central nervous disorders. This case series reports the isolation of Mycoplasma hyorhinis from cerebrospinal fluid and/ or meningeal swabs from piglets originating from four different piglet producing farms in Austria. CASE PRESENTATION: On farm 1, coughing, stiff movement and central nervous signs occurred in nursery piglets. Mycoplasma hyorhinis was the only pathogen isolated from meningeal swabs from two piglets showing central nervous signs. Fibrinopurulent leptomeningitis was only observed in one piglet. Only one of two nursery piglets from farm 2 showed mild central nervous signs but no histologic lesions; Mycoplasma hyorhinis was isolated from cerebrospinal fluid of the piglet with neurologic signs. Mycoplasma hyorhinis was isolated from cerebrospinal fluid of all three investigated piglets from farm 3, all of which showed central nervous signs and purulent leptomeningitis. Further, Streptococcus suis was isolated from the cerebrospinal fluid of one piglet. Fibrinopurulent leptomeningitis was detected in two piglets from farm 4 that had died overnight without showing any clinical signs and Mycoplasma hyorhinis was isolated from meningeal swabs from both piglets. CONCLUSION: While causality has yet to be proven by experimental infection and in situ detection of the pathogen in histologic sections, the findings of this study and the absence of other pathogens suggest Mycoplasma hyorhinis as a potential causative agent of meningitis in swine.

7.
Microorganisms ; 8(7)2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708445

RESUMEN

Age-related successions in the porcine gut microbiome may modify the microbial response to dietary changes. This may especially affect the bacterial response to essential nutrients for bacterial metabolism, such as phosphorus (P). Against this background, we used phytase supplementation (0 or 650 phytase units/kg complete feed) to alter the P availability in the hindgut and studied the dietary response of the fecal bacterial microbiome from the early to late fattening period. Fecal DNA were isolated after 0, 3, 5 and 10 weeks and the V3-V4 region of the 16S rRNA gene was sequenced. Permutational analysis of variance showed distinct bacterial communities for diet and week. Alpha-diversity and taxonomy indicated progressing maturation of the bacterial community with age. Prevotellaceae declined, whereas Clostridiaceae and Ruminococcaceae increased from weeks 0 to 3, 5, and 10, indicating changes in fiber-digesting capacities with age. Phytase affected all major bacterial taxa but reduced species richness (Chao1) and diversity (Shannon and Simpson). To conclude, present results greatly support the importance of available P for bacterial proliferation, including fibrolytic, lactic acid- and butyrate-producing genera, in pigs. Results also emphasize the necessity to assess bacterial responses to dietary manipulation at several time points throughout the fattening period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA