Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(6): ziae057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764790

RESUMEN

Arterial media calcification or pathological deposition of calcium-phosphate crystals in the vessel wall contributes significantly to the high mortality rate observed in patients with CKD. Extracellular nucleotides (ie, ATP or UTP) regulate the arterial calcification process by interacting with (1) purinergic receptors and (2) breakdown via ecto-nucleotidases, such as ectonucleotide pyrophosphatase/phosphodiesterase NPP1 or NPP3, affecting the local levels of calcification inhibitor, pyrophosphate, and stimulator inorganic phosphate (PPi/Pi ratio). Also, it has been shown that ATP analogs (ie, ß,γ-methylene-ATP [ß,γ-meATP]) inhibit vascular smooth muscle cell calcification in vitro. In the first experiment, daily dosing of ß,γ-meATP (2 mg/kg) was investigated in rats fed a warfarin diet to trigger the development of non-CKD-related arterial medial calcifications. This study showed that ß,γ-meATP significantly lowered the calcium scores in the aorta and peripheral vessels in warfarin-exposed rats. In a second experiment, daily dosing of 4 mg/kg ß,γ-meATP and its metabolite medronic acid (MDP) was analyzed in rats fed an adenine diet to promote the development of CKD-related arterial medial calcification. Administration of ß,γ-meATP and MDP did not significantly decrease aortic calcification scores in this model. Moreover, both compounds induced deleterious effects on physiological bone mineralization, causing an imminent risk for worsening the already compromised bone status in CKD. Due to this, it was not possible to raise the dosage of both compounds to tackle CKD-related arterial calcification. Again, this points out the difficult task of targeting solely ectopic calcifications without negatively affecting physiological bone mineralization. On the other hand, aortic mRNA expression of Enpp1 and Enpp3 was significantly and positively associated with aortic calcification scores, suggesting that normalizing the aortic NPP1/3 activity to control values might be a possible target to treat (CKD-induced) arterial media calcifications.

2.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240387

RESUMEN

Diabetic Kidney Disease (DKD) is a major microvascular complication for diabetic patients and is the most common cause of chronic kidney disease (CKD) and end-stage renal disease. Antidiabetic drugs, such as metformin and canagliflozin, have been shown to exert renoprotective effects. Additionally, quercetin recently showed promising results for the treatment of DKD. However, the molecular pathways through which these drugs exert their renoprotective effects remain partly unknown. The current study compares the renoprotective potential of metformin, canagliflozin, metformin + canagliflozin, and quercetin in a preclinical rat model of DKD. By combining streptozotocin (STZ) and nicotinamide (NAD) with daily oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration, DKD was induced in male Wistar Rats. After two weeks, rats were assigned to five treatment groups, receiving vehicle, metformin, canagliflozin, metformin + canagliflozin, or quercetin for a period of 12 weeks by daily oral gavage. Non-diabetic vehicle-treated control rats were also included in this study. All rats in which diabetes was induced developed hyperglycemia, hyperfiltration, proteinuria, hypertension, renal tubular injury and interstitial fibrosis, confirming DKD. Metformin and canagliflozin, alone or together, exerted similar renoprotective actions and similar reductions in tubular injury and collagen accumulation. Renoprotective actions of canagliflozin correlated with reduced hyperglycemia, while metformin was able to exert these effects even in the absence of proper glycemic control. Gene expression revealed that the renoprotective pathways may be traced back to the NF-κB pathway. No protective effect was seen with quercetin. In this experimental model of DKD, metformin and canagliflozin were able to protect the kidney against DKD progression, albeit in a non-synergistic way. These renoprotective effects may be attributable to the inhibition of the NF-κB pathway.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Hiperglucemia , Metformina , Masculino , Ratas , Animales , Nefropatías Diabéticas/metabolismo , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Metformina/metabolismo , FN-kappa B/metabolismo , Quercetina/farmacología , Ratas Wistar , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Hiperglucemia/metabolismo
3.
Nutrients ; 15(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36771305

RESUMEN

Renal osteodystrophy (ROD) is a complex and serious complication of chronic kidney disease (CKD), a major global health problem caused by loss of renal function. Currently, the gold standard to accurately diagnose ROD is based on quantitative histomorphometric analysis of trabecular bone. Although this analysis encompasses the evaluation of osteoblast and osteoclast number/activity, tfigurehe interest in osteocytes remains almost nihil. Nevertheless, this cell type is evidenced to perform a key role in bone turnover, particularly through its production of various bone proteins, such as sclerostin. In this study, we aim to investigate, in the context of ROD, to which extent an association exists between bone turnover and the abundance of osteocytes and osteocytic sclerostin expression in both the trabecular and cortical bone compartments. Additionally, the effect of parathyroid hormone (PTH) on bone sclerostin expression was examined in parathyroidectomized rats. Our results indicate that PTH exerts a direct inhibitory function on sclerostin, which in turn negatively affects bone turnover and mineralization. Moreover, this study emphasizes the functional differences between cortical and trabecular bone, as the number of (sclerostin-positive) osteocytes is dependent on the respective bone compartment. Finally, we evaluated the potential of sclerostin as a marker for CKD and found that the diagnostic performance of circulating sclerostin is limited and that changes in skeletal sclerostin expression occur more rapidly and more pronounced. The inclusion of osteocytic sclerostin expression and cortical bone analysis could be relevant when performing bone histomorphometric analysis for diagnostic purposes and to unravel pathological mechanisms of bone disease.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Insuficiencia Renal Crónica , Ratas , Animales , Osteocitos/metabolismo , Huesos/metabolismo , Remodelación Ósea , Hormona Paratiroidea/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Insuficiencia Renal Crónica/complicaciones
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835062

RESUMEN

Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model. Employing a high-dimensionality unbiased proteomic approach, we also investigated the molecular signaling events associated with blocking arterial calcification through SBI-425 dosing. The remedial actions of SBI-425 were strongly associated with (i) a significant downregulation of inflammatory (acute phase response signaling) and steroid/glucose nuclear receptor signaling (LXR/RXR signaling) pathways and (ii) an upregulation of mitochondrial metabolic pathways (TCA cycle II and Fatty Acid ß-oxidation I). Interestingly, we previously demonstrated that uremic toxin-induced arterial calcification contributes to the activation of the acute phase response signaling pathway. Therefore, both studies suggest a strong link between acute phase response signaling and arterial calcification across different conditions. The identification of therapeutic targets in these molecular signaling pathways may pave the way to novel therapies against the development of arterial media calcification.


Asunto(s)
Calcinosis , Calcificación Vascular , Ratas , Animales , Warfarina , Reacción de Fase Aguda , Proteómica , Fosfatasa Alcalina/metabolismo , Calcinosis/metabolismo , Calcificación Vascular/patología
5.
FASEB J ; 37(1): e22701, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520031

RESUMEN

Calcification of the medial layer, inducing arterial stiffness, contributes significantly to cardiovascular mortality in patients with chronic kidney disease (CKD). Extracellular nucleotides block the mineralization of arteries by binding to purinergic receptors including the P2Y2 receptor. This study investigates whether deletion of the P2Y2 receptor influences the development of arterial media calcification in CKD mice. Animals were divided into: (i) wild type mice with normal renal function (control diet) (n = 8), (ii) P2Y2 R-/- mice with normal renal function (n = 8), (iii) wild type mice with CKD (n = 27), and (iv) P2Y2 R-/- mice with CKD (n = 22). To induce CKD, animals received an alternating (0.2-0.3%) adenine diet for 7 weeks. All CKD groups developed a similar degree of chronic renal failure as reflected by high serum creatinine and phosphorus levels. Also, the presence of CKD induced calcification in the heart and medial layer of the aortic wall. However, deletion of the P2Y2 receptor makes CKD mice more susceptible to the development of calcification in the heart and aorta (aortic calcium scores (median ± IQR), CKD-wild type: 0.34 ± 4.3 mg calcium/g wet tissue and CKD-P2Y2 R-/- : 4.0 ± 13.2 mg calcium/g wet tissue). As indicated by serum and aortic mRNA markers, this P2Y2 R-/- mediated increase in CKD-related arterial media calcification was associated with an elevation of calcification stimulators, including alkaline phosphatase and inflammatory molecules interleukin-6 and lipocalin 2. The P2Y2 receptor should be considered as an interesting therapeutic target for tackling CKD-related arterial media calcification.


Asunto(s)
Fosfatasa Alcalina , Lipocalina 2 , Insuficiencia Renal Crónica , Túnica Íntima , Calcificación Vascular , Animales , Ratones , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Lipocalina 2/genética , Lipocalina 2/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Regulación hacia Arriba , Calcificación Vascular/etiología , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
6.
Nephrol Dial Transplant ; 38(5): 1127-1138, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36316014

RESUMEN

BACKGROUND: Cardiovascular disease remains the leading cause of death in chronic kidney disease (CKD) patients, especially in those undergoing dialysis and kidney transplant surgery. CKD patients are at high risk of developing arterial media calcifications (AMC) and arterial stiffness. We hypothesized that investigation of disease progression at an early stage could provide novel insights in understanding AMC etiology. METHODS: An adenine diet was administered to male Wistar rats to induce AMC. Rats were sacrificed after 2, 4 and 8 weeks. AMC was measured by assessment of aortic calcium and visualized using histology. Arterial stiffness was measured in vivo by ultrasound and ex vivo by applying cyclic stretch of physiological magnitude on isolated arterial segments, allowing us to generate the corresponding pressure-diameter loops. Further, ex vivo arterial reactivity was assessed in organ baths at 2 and 4 weeks to investigate early alterations in biomechanics/cellular functionality. RESULTS: CKD rats showed a time-dependent increase in aortic calcium which was confirmed on histology. Accordingly, ex vivo arterial stiffness progressively worsened. Pressure-diameter loops showed a gradual loss of arterial compliance in CKD rats. Additionally, viscoelastic properties of isolated arterial segments were altered in CKD rats. Furthermore, after 2 and 4 weeks of adenine treatment, a progressive loss in basal, nitric oxide (NO) levels was observed, which was linked to an increased vessel tonus and translates into an increasing viscous modulus. CONCLUSIONS: Our observations indicate that AMC-related vascular alterations develop early after CKD induction prior to media calcifications being present. Preventive action, related to restoration of NO bioavailability, might combat AMC development.


Asunto(s)
Arteriosclerosis , Calcinosis , Insuficiencia Renal Crónica , Calcificación Vascular , Rigidez Vascular , Masculino , Ratas , Animales , Calcio , Ratas Wistar , Diálisis Renal , Insuficiencia Renal Crónica/complicaciones , Rigidez Vascular/fisiología , Progresión de la Enfermedad , Adenina , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control
7.
Metabolites ; 12(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35448514

RESUMEN

The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.

8.
FASEB J ; 36(5): e22315, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429059

RESUMEN

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg-1 · d-1 ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.


Asunto(s)
Calcinosis , Calcificación Vascular , Enfermedades Vasculares , Animales , Calcio , Progresión de la Enfermedad , Células Endoteliales , Masculino , NG-Nitroarginina Metil Éster , Ratas , Túnica Media , Calcificación Vascular/inducido químicamente , Warfarina/toxicidad
9.
Kidney Int ; 101(5): 929-944, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271933

RESUMEN

Current treatment strategies for chronic kidney disease (CKD) mainly focus on controlling risk factors. Metformin, a first-line drug for type 2 diabetes, exerts beneficial pleiotropic actions beyond its prescribed use and incipient data have revealed protective effects against the development of kidney impairment. This study evaluated the therapeutic efficacy of metformin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor recently approved by the United States Food and Drug Administration to treat diabetic nephropathy, in slowing the progression of established non-diabetic CKD. Rats with adenine-induced CKD were assigned to different treatment groups to receive either 200 mg/kg metformin, four or five weeks after the start of the adenine diet (established mild-moderate CKD), or 25 mg/kg canagliflozin four weeks after the start of the diet, by daily oral gavage administered during four weeks. Each treatment group was compared to a vehicle group. Chronic adenine dosing resulted in severe CKD in vehicle-treated rats as indicated by a marked rise in serum creatinine levels, a marked decrease in creatinine clearance, and a disturbed mineral metabolism. Metformin, but not canagliflozin, halted functional kidney decline. Additionally, kidneys of metformin-treated animals showed less interstitial area and inflammation as compared to the vehicle group. Proteomic analyses revealed that metformin's kidney-protective effect was associated with the activation of the Hippo signaling pathway, a highly conserved multiprotein kinase cascade that controls tissue development, organ size, cell proliferation, and apoptosis. Thus, metformin demonstrated therapeutic efficacy by halting the progression of established CKD in a rat model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Metformina , Insuficiencia Renal Crónica , Adenina/efectos adversos , Animales , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Femenino , Humanos , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Proteómica , Ratas , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico
10.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038187

RESUMEN

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenina/efectos adversos , Anciano , Animales , Calcio , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Warfarina/efectos adversos , beta Catenina
11.
J Cell Physiol ; 237(1): 1070-1086, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34658034

RESUMEN

Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.


Asunto(s)
Acetilcisteína , Sulfuro de Hidrógeno , Acetilcisteína/farmacología , Arterias/metabolismo , Glutatión/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Osteoblastos/metabolismo , Osteogénesis
12.
J Ethnopharmacol ; 285: 114860, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822955

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herniaria hirsuta is traditionally used in Moroccan folk medicine for treatment of urinary stones and as a diuretic. It is rich in saponins, which are known to be deglycosylated in the colon, whereafter aglycones such as medicagenic acid are absorbed and further metabolized in the liver. AIM OF THE STUDY: A sample of hepatic metabolites of medicagenic acid, with medicagenic acid glucuronide as the most abundant one, was evaluated for in vitro activity against urinary stones. A crystallization assay and a crystal-cell interaction assay were used to evaluate in vitro activity of hepatic metabolites of medicagenic acid on CaC2O4 (calciumoxalate) crystals, present in the majority of urinary stones. MATERIALS AND METHODS: In the crystallization assay the effects on nucleation of Ca2+ and C2O42- and aggregation of the CaC2O4 crystals are studied. In the crystal-cell interaction assay crystal retention is investigated by determining the amount of Ca2+ bound to injured monolayers of MDCK I cells. RESULTS: Results of the crystallization assay showed a tentative effect on crystal aggregation. The crystal-cell interaction assay showed a significant inhibition of crystal binding, which may reduce crystal retention in the urinary tract. CONCLUSIONS: As both formation of crystals by inhibiting aggregation and retention of crystals is affected, the beneficial effect of H. hirsuta against urinary stones may at least in part be attributed to medicagenic acid metabolites, indicating that saponins containing medicagenic acid may act as prodrugs.


Asunto(s)
Oxalato de Calcio/química , Caryophyllaceae/química , Fitoterapia , Extractos Vegetales/farmacología , Triterpenos/química , Triterpenos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Cristalización , Perros , Células de Riñón Canino Madin Darby , Medicina Tradicional , Extractos Vegetales/química , Triterpenos/metabolismo
13.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884571

RESUMEN

One of the most important risk factors for developing chronic kidney disease (CKD) is diabetes. To assess the safety and efficacy of potential drug candidates, reliable animal models that mimic human diseases are crucial. However, a suitable model of diabetic kidney disease (DKD) is currently not available. The aim of this study is to develop a rat model of DKD by combining streptozotocin and nicotinamide (STZ/NAD) with oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration. Diabetes was induced in male Wistar rats by intravenous injection of 65 mg/kg STZ, 15 min after intraperitoneal injection of 230 mg/kg NAD. Rats were assigned to different groups receiving L-NAME (100 mg/kg/day) (STZ/NAD/L-NAME) or vehicle (STZ/NAD) for a period of 9 or 12 weeks by daily oral gavage. All rats developed hyperglycemia. Hyperfiltration was observed at the start of the study, whereas increased serum creatinine, albumin-to-creatinine ratio, and evolving hypofiltration were detected at the end of the study. Daily L-NAME administration caused a rapid rise in blood pressure. Histopathological evaluation revealed heterogeneous renal injury patterns, which were most severe in the STZ/NAD/L-NAME rats. L-NAME-induced NO-deficiency in STZ/NAD-induced diabetic rats leads to multiple characteristic features of human DKD and may represent a novel rat model of DKD.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/patología , NAD/toxicidad , NG-Nitroarginina Metil Éster/toxicidad , Animales , Glucemia/análisis , Presión Sanguínea , Nefropatías Diabéticas/etiología , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/toxicidad , Masculino , NG-Nitroarginina Metil Éster/administración & dosificación , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar
14.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769044

RESUMEN

Arterial media calcification (AMC) is predominantly regulated by vascular smooth muscle cells (VSMCs), which transdifferentiate into pro-calcifying cells. In contrast, there is little evidence for endothelial cells playing a role in the disease. The current study investigates cellular functioning and molecular pathways underlying AMC, respectively by, an ex vivo isometric organ bath set-up to explore the interaction between VSMCs and ECs and quantitative proteomics followed by functional pathway interpretation. AMC development, which was induced in mice by dietary warfarin administration, was proved by positive Von Kossa staining and a significantly increased calcium content in the aorta compared to that of control mice. The ex vivo organ bath set-up showed calcified aortic segments to be significantly more sensitive to phenylephrine induced contraction, compared to control segments. This, together with the fact that calcified segments as compared to control segments, showed a significantly smaller contraction in the absence of extracellular calcium, argues for a reduced basal NO production in the calcified segments. Moreover, proteomic data revealed a reduced eNOS activation to be part of the vascular calcification process. In summary, this study identifies a poor endothelial function, next to classic pro-calcifying stimuli, as a possible initiator of arterial calcification.


Asunto(s)
Células Endoteliales/patología , Túnica Media/efectos de los fármacos , Calcificación Vascular/inducido químicamente , Calcificación Vascular/patología , Warfarina/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Calcio/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos DBA , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Osteogénesis/efectos de los fármacos , Túnica Media/metabolismo , Túnica Media/patología , Calcificación Vascular/metabolismo
15.
Pharmaceutics ; 13(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34452102

RESUMEN

Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.75% adenine rat model of CKD. Treatments started with the induction of CKD, including (i) rats with normal renal function (control diet) treated with vehicle and CKD rats treated with either (ii) vehicle, (iii) 10 mg/kg/day SBI-425, (iv) 120 µmol/kg/day PPi and (v) 120 µmol/kg/day PPi and 10 mg/kg/day SBI-425. All CKD groups developed a stable chronic renal failure reflected by hyperphosphatemia, hypocalcemia and high serum creatinine levels. CKD induced arterial media calcification and bone metabolic defects. All treatments, except for SBI-425 alone, blocked CKD-related arterial media calcification. More important, SBI-425 alone and in combination with PPi increased osteoid area pointing to a less efficient bone mineralization. Clearly, potential side effects on bone mineralization will need to be assessed in any clinical trial aimed at modifying the Pi/PPi ratio in CKD patients who already suffer from a compromised bone status.

17.
Nephrol Dial Transplant ; 35(10): 1689-1699, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022710

RESUMEN

INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.


Asunto(s)
Modelos Animales de Enfermedad , Compuestos Férricos/uso terapéutico , Fallo Renal Crónico/tratamiento farmacológico , Sacarosa/uso terapéutico , Calcificación Vascular/prevención & control , Animales , Combinación de Medicamentos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Fallo Renal Crónico/complicaciones , Masculino , Fósforo/sangre , Ratas , Ratas Wistar , Calcificación Vascular/etiología
18.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076470

RESUMEN

Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5'-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor-pyrophosphate and the calcification stimulator-inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.


Asunto(s)
Espacio Extracelular/metabolismo , Nucleótidos de Purina/metabolismo , Receptores Purinérgicos/metabolismo , Calcificación Vascular/metabolismo , Animales , Arterias/metabolismo , Arterias/patología , Humanos , Transducción de Señal
19.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366042

RESUMEN

Sclerostin, a 22-kDa glycoprotein that is mainly secreted by the osteocytes, is a soluble inhibitor of canonical Wnt signaling. Therefore, when present at increased concentrations, it leads to an increased bone resorption and decreased bone formation. Serum sclerostin levels are known to be increased in the elderly and in patients with chronic kidney disease. In these patient populations, there is a high incidence of ectopic cardiovascular calcification. These calcifications are strongly associated with cardiovascular morbidity and mortality. Although data are still controversial, it is likely that there is a link between ectopic calcification and serum sclerostin levels. The main question, however, remains whether sclerostin exerts either a protective or deleterious role in the ectopic calcification process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/sangre , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/sangre , Calcificación Vascular/metabolismo , Animales , Humanos , Vía de Señalización Wnt/fisiología
20.
Bone ; 137: 115392, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360899

RESUMEN

Arterial media calcification is frequently seen in elderly and patients with chronic kidney disease (CKD), diabetes and osteoporosis. Pyrophosphate is a well-known calcification inhibitor that binds to nascent hydroxyapatite crystals and prevents further incorporation of inorganic phosphate into these crystals. However, the enzyme tissue-nonspecific alkaline phosphatase (TNAP), which is expressed in calcified arteries, degrades extracellular pyrophosphate into phosphate ions, by which pyrophosphate loses its ability to block vascular calcification. Here, we aimed to evaluate whether pharmacological TNAP inhibition is able to prevent the development of arterial calcification in a rat model of warfarin-induced vascular calcification. To investigate the effect of the pharmacological TNAP inhibitor SBI-425 on vascular calcification and bone metabolism, a 0.30% warfarin rat model was used. Warfarin exposure resulted in distinct calcification in the aorta and peripheral arteries. Daily administration of the TNAP inhibitor SBI-425 (10 mg/kg/day) for 7 weeks significantly reduced vascular calcification as indicated by a significant decrease in calcium content in the aorta (vehicle 3.84 ± 0.64 mg calcium/g wet tissue vs TNAP inhibitor 0.70 ± 0.23 mg calcium/g wet tissue) and peripheral arteries and a distinct reduction in area % calcification on Von Kossa stained aortic sections as compared to vehicle. Administration of SBI-425 resulted in decreased bone formation rate and mineral apposition rate, and increased osteoid maturation time and this without significant changes in osteoclast- and eroded perimeter. Administration of TNAP inhibitor SBI-425 significantly reduced the calcification in the aorta and peripheral arteries of a rat model of warfarin-induced vascular calcification. However, suppression of TNAP activity should be limited in order to maintain adequate physiological bone mineralization.


Asunto(s)
Fosfatasa Alcalina , Calcificación Vascular , Fosfatasa Alcalina/antagonistas & inhibidores , Animales , Calcificación Fisiológica , Proteínas de la Membrana , Osteogénesis , Ratas , Túnica Media , Calcificación Vascular/inducido químicamente , Calcificación Vascular/tratamiento farmacológico , Warfarina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...