Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
iScience ; 26(11): 108256, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965140

RESUMEN

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of human angiotensin converting enzyme 2 (hACE-2) binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using Wuhan-WT (vaccine strain), delta (B.1.167.2), omicron BA1 and BA2 variant viral strains showed strong correlation with cell-based pseudovirus neutralization activity (PNA) and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta and omicron variant resistance to neutralization in samples with paired vaccine strain and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. Importantly, this completely automated assay can be performed in 4 h to measure neutralizing antibody titers for 16 samples over 8 serial dilutions or, 128 samples at a single dilution with replicates. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

2.
Cell Rep ; 42(9): 113150, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37708028

RESUMEN

The pairing of antibody genes IGHV2-5/IGLV2-14 is established as a public immune response that potently cross-neutralizes SARS-CoV-2 variants, including Omicron, by targeting class-3/RBD-5 epitopes in the receptor binding domain (RBD). LY-CoV1404 (bebtelovimab) exemplifies this, displaying exceptional potency against Omicron sub-variants up to BA.5. Here, we report a human antibody, 002-S21B10, encoded by the public clonotype IGHV2-5/IGLV2-14. While 002-S21B10 neutralized key SARS-CoV-2 variants, it did not neutralize Omicron, despite sharing >92% sequence similarity with LY-CoV1404. The structure of 002-S21B10 in complex with spike trimer plus structural and sequence comparisons with LY-CoV1404 and other IGHV2-5/IGLV2-14 antibodies revealed significant variations in light-chain orientation, paratope residues, and epitope-paratope interactions that enable some antibodies to neutralize Omicron but not others. Confirming this, replacing the light chain of 002-S21B10 with the light chain of LY-CoV1404 restored 002-S21B10's binding to Omicron. Understanding such Omicron evasion from public response is vital for guiding therapeutics and vaccine design.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Epítopos
3.
Br J Haematol ; 202(5): 937-941, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37287128

RESUMEN

Patients with sickle cell disease (SCD) are considered to be immunocompromised, yet data on the antibody response to SARS-CoV-2 vaccination in SCD is limited. We investigated anti-SARS-CoV-2 IgG titres and overall neutralizing activity in 201 adults with SCD and demographically matched non-SCD controls. Unexpectedly, patients with SCD generate a more robust and durable COVID-19 vaccine IgG response compared to matched controls, though the neutralizing activity remained similar across both cohorts. These findings suggest that patients with SCD achieve a similar antibody response following COVID-19 vaccination compared to the general population, with implications for optimal vaccination strategies for patients with SCD.


Asunto(s)
Anemia de Células Falciformes , COVID-19 , Adulto , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Inmunoglobulina G , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/terapia , Anticuerpos Antivirales , Inmunidad , Anticuerpos Neutralizantes
4.
Blood ; 142(8): 742-747, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367252

RESUMEN

Among the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ABO(H) blood group antigens are among the most recognized predictors of infection. However, the mechanisms by which ABO(H) antigens influence susceptibility to COVID-19 remain incompletely understood. The receptor-binding domain (RBD) of SARS-CoV-2, which facilitates host cell engagement, bears significant similarity to galectins, an ancient family of carbohydrate-binding proteins. Because ABO(H) blood group antigens are carbohydrates, we compared the glycan-binding specificity of SARS-CoV-2 RBD with that of galectins. Similar to the binding profile of several galectins, the RBDs of SARS-CoV-2, including Delta and Omicron variants, exhibited specificity for blood group A. Not only did each RBD recognize blood group A in a glycan array format, but each SARS-CoV-2 virus also displayed a preferential ability to infect blood group A-expressing cells. Preincubation of blood group A cells with a blood group-binding galectin specifically inhibited the blood group A enhancement of SARS-CoV-2 infection, whereas similar incubation with a galectin that does not recognize blood group antigens failed to impact SARS-CoV-2 infection. These results demonstrated that SARS-CoV-2 can engage blood group A, providing a direct link between ABO(H) blood group expression and SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Sistema del Grupo Sanguíneo ABO , Galectinas
5.
Structure ; 31(7): 801-811.e5, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167972

RESUMEN

Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales , Epítopos , Pruebas de Neutralización
6.
Nat Commun ; 14(1): 1638, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015925

RESUMEN

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Asunto(s)
COVID-19 , Humanos , Niño , Adulto , SARS-CoV-2 , Enfermedad Crítica , Citocinas , Fibrinógeno
7.
Pediatr Infect Dis J ; 42(2): 130-135, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638399

RESUMEN

BACKGROUND: Nucleocapsid antigenemia in adults has demonstrated high sensitivity and specificity for acute infection, and antigen burden is associated with disease severity. Data regarding SARS-CoV-2 antigenemia in children are limited. METHODS: We retrospectively analyzed blood plasma specimens from hospitalized children with COVID-19 or MIS-C. Nucleocapsid and spike were measured using ultrasensitive immunoassays. RESULTS: We detected nucleocapsid antigenemia in 62% (50/81) and spike antigenemia in 27% (21/79) of children with acute COVID-19 but 0% (0/26) and 15% (4/26) with MIS-C from March 2020-March 2021. Higher nucleocapsid levels were associated with radiographic infiltrates and respiratory symptoms in children with COVID-19. CONCLUSIONS: Antigenemia lacks the sensitivity to diagnose acute infection in children but is associated with signs and symptoms of lower respiratory tract involvement. Further study into the mechanism of antigenemia, its association with specific organ involvement, and the role of antigenemia in the pathogenesis of COVID-19 is warranted.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Niño , Estudios Retrospectivos , Anticuerpos Antivirales
8.
Int J Gynaecol Obstet ; 162(1): 154-162, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36598270

RESUMEN

OBJECTIVE: To improve our understanding of the immune response, including the neutralization antibody response, following COVID-19 vaccination in pregnancy. METHODS: This was a prospective cohort study comprising patients with PCR-confirmed SARS-CoV-2 infection and patients who received both doses of mRNA COVID-19 vaccine (mRNA-1273, BNT162b2) in pregnancy recruited from two hospitals in Atlanta, GA, USA. Maternal blood and cord blood at delivery were assayed for anti-receptor binding domain (RBD) IgG, IgA and IgM, and neutralizing antibody. The detection of antibodies, titers, and maternal to fetal transfer ratios were compared. RESULTS: Nearly all patients had detectable RBD-binding IgG in maternal and cord samples. The vaccinated versus infected cohort had a significantly greater proportion of cord samples with detectable neutralizing antibody (94% vs. 28%, P < 0.001) and significantly higher transfer ratios for RBD-specific IgG and neutralizing antibodies with a transfer efficiency of 105% (vs. 80%, P < 0.001) and 110% (vs. 90%, P < 0.001), respectively. There was a significant linear decline in maternal and cord blood RBD-specific IgG and neutralizing antibody titers as time from vaccination to delivery increased. CONCLUSIONS: Those who receive the mRNA COVID-19 vaccine mount an immune response that is equivalent to-if not greater than-those naturally infected by SARS-CoV-2 during pregnancy.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Femenino , Embarazo , Humanos , Vacuna BNT162 , Vacunas contra la COVID-19 , Formación de Anticuerpos , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , ARN Mensajero , Inmunoglobulina G , Anticuerpos Antivirales , Vacunación
9.
Transfusion ; 63(3): 457-462, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708051

RESUMEN

INTRODUCTION: The impact of blood storage on red blood cell (RBC) alloimmunization remains controversial, with some studies suggesting enhancement of RBC-induced alloantibody production and others failing to observe any impact of storage on alloantibody formation. Since evaluation of storage on RBC alloimmunization in patients has examined antibody formation against a broad range of alloantigens, it remains possible that different clinical outcomes reflect a variable impact of storage on alloimmunization to specific antigens. METHODS: RBCs expressing two distinct model antigens, HEL-OVA-Duffy (HOD) and KEL, separately or together (HOD × KEL), were stored for 0, 8, or 14 days, followed by detection of antigen levels prior to transfusion. Transfused donor RBC survival was assessed within 24 h of transfusion, while IgM and IgG antibody production were assessed 5 and 14 days after transfusion. RESULTS: Stored HOD or KEL RBCs retained similar HEL or KEL antigen levels, respectively, as fresh RBCs, but did exhibit enhanced RBC clearance with increased storage age. Storage enhanced IgG antibody formation against HOD, while the oppositive outcome occurred following transfusion of stored KEL RBCs. The distinct impact of storage on HOD or KEL alloimmunization did not appear to reflect intrinsic differences between HOD or KEL RBCs, as transfusion of stored HOD × KEL RBCs resulted in increased IgG anti-HOD antibody development and reduced IgG anti-KEL antibody formation. CONCLUSIONS: These data demonstrate a dichotomous impact of storage on immunization to distinct RBC antigens, offering a possible explanation for inconsistent clinical experience and the need for additional studies on the relationship between RBC storage and alloimmunization.


Asunto(s)
Antígenos , Transfusión de Eritrocitos , Ratones , Animales , Transfusión de Eritrocitos/efectos adversos , Eritrocitos , Isoantígenos , Isoanticuerpos , Inmunoglobulina G
10.
J Infect Dis ; 227(7): 850-854, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35767286

RESUMEN

BACKGROUND: We examined the relationship between placental histopathology and transplacental antibody transfer in pregnant patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Differences in plasma concentrations of anti-receptor biding domain (RBD) immunoglobulin (Ig)G antibodies in maternal and cord blood were analyzed according to presence of placental injury. RESULTS: Median anti-RBD IgG concentrations in cord blood with placental injury (n = 7) did not differ significantly from those without injury (n = 16) (median 2.7 [interquartile range {IQR}, 1.8-3.6] vs 2.7 [IQR, 2.4-2.9], P = 0.59). However, they were associated with lower transfer ratios (median 0.77 [IQR, 0.61-0.97] vs 0.97 [IQR, 0.80-1.01], P = 0.05). CONCLUSIONS: SARS-CoV-2 placental injury may mediate reduced maternal-fetal antibody transfer.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Humanos , Embarazo , Femenino , Placenta , SARS-CoV-2 , Anticuerpos , Anticuerpos Antivirales
11.
Artículo en Inglés | MEDLINE | ID: mdl-36483398

RESUMEN

We describe severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG seroprevalence and antigenemia among patients at a medical center in January-March 2021 using residual clinical blood samples. The overall seroprevalences were 17% by infection and 16% by vaccination. Spent or residual samples are a feasible alternative for rapidly estimating seroprevalence or monitoring trends in infection and vaccination.

12.
bioRxiv ; 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36324804

RESUMEN

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.

13.
Sci Adv ; 8(40): eadd2032, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197988

RESUMEN

In this study, by characterizing several human monoclonal antibodies (mAbs) isolated from single B cells of the COVID-19-recovered individuals in India who experienced ancestral Wuhan strain (WA.1) of SARS-CoV-2 during early stages of the pandemic, we found a receptor binding domain (RBD)-specific mAb 002-S21F2 that has rare gene usage and potently neutralized live viral isolates of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron sublineages (BA.1, BA.2, BA.2.12.1, BA.4, and BA.5) with IC50 ranging from 0.02 to 0.13 µg/ml. Structural studies of 002-S21F2 in complex with spike trimers of Omicron and WA.1 showed that it targets a conformationally conserved epitope on the outer face of RBD (class 3 surface) outside the ACE2-binding motif, thereby providing a mechanistic insights for its broad neutralization activity. The discovery of 002-S21F2 and the broadly neutralizing epitope it targets have timely implications for developing a broad range of therapeutic and vaccine interventions against SARS-CoV-2 variants including Omicron sublineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/química , Anticuerpos Antivirales , Epítopos , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
14.
J Infect Dis ; 226(9): 1577-1587, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35877413

RESUMEN

Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is essential for diagnosis, treatment, and infection control. Polymerase chain reaction (PCR) fails to distinguish acute from resolved infections, as RNA is frequently detected after infectiousness. We hypothesized that nucleocapsid in blood marks acute infection with the potential to enhance isolation and treatment strategies. In a retrospective serosurvey of inpatient and outpatient encounters, we categorized samples along an infection timeline using timing of SARS-CoV-2 testing and symptomatology. Among 1860 specimens from 1607 patients, the highest levels and frequency of antigenemia were observed in samples from acute SARS-CoV-2 infection. Antigenemia was higher in seronegative individuals and in those with severe disease. In our analysis, antigenemia exhibited 85.8% sensitivity and 98.6% specificity as a biomarker for acute coronavirus disease 2019 (COVID-19). Thus, antigenemia sensitively and specifically marks acute SARS-CoV-2 infection. Further study is warranted to determine whether antigenemia may aid individualized assessment of active COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Prueba de COVID-19 , Estudios Retrospectivos , Sensibilidad y Especificidad , Nucleocápside , Biomarcadores
15.
medRxiv ; 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132426

RESUMEN

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

16.
Res Sq ; 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35194599

RESUMEN

Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.

17.
Obstet Gynecol ; 138(2): 189-197, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33910220

RESUMEN

OBJECTIVE: To characterize maternal immune response after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy and quantify the efficiency of transplacental antibody transfer. METHODS: We conducted a prospective cohort study of pregnant patients who tested positive for SARS CoV-2 infection at any point in pregnancy and collected paired maternal and cord blood samples at the time of delivery. An enzyme-linked immunosorbent assay (ELISA) and neutralization assays were performed to measure maternal plasma and cord blood concentrations and neutralizing potency of immunoglobulin (Ig)G, IgA, and IgM antibodies directed against the SARS-CoV-2 spike protein. Differences in concentrations according to symptomatic compared with asymptomatic infection and time from positive polymerase chain reaction (PCR) test result to delivery were analyzed using nonparametric tests of significance. The ratio of cord to maternal anti-receptor-binding domain IgG titers was analyzed to assess transplacental transfer efficiency. RESULTS: Thirty-two paired samples were analyzed. Detectable anti-receptor-binding domain IgG was detected in 100% (n=32) of maternal and 91% (n=29) of cord blood samples. Functional neutralizing antibody was present in 94% (n=30) of the maternal and 25% (n=8) of cord blood samples. Symptomatic infection was associated with a significant difference in median (interquartile range) maternal anti-receptor-binding domain IgG titers compared with asymptomatic infection (log 3.2 [3.5-2.4] vs log 2.7 [2.9-1.4], P=.03). Median (interquartile range) maternal anti-receptor-binding domain IgG titers were not significantly higher in patients who delivered more than 14 days after a positive PCR test result compared with those who delivered within 14 days (log 3.3 [3.5-2.4] vs log 2.67 [2.8-1.6], P=.05). Median (range) cord/maternal antibody ratio was 0.81 (0.67-0.88). CONCLUSIONS: These results demonstrate robust maternal neutralizing and anti-receptor-binding domain IgG response after SARS-CoV-2 infection, yet a lower-than-expected efficiency of transplacental antibody transfer and a significant reduction in neutralization between maternal blood and cord blood. Maternal infection does confer some degree of neonatal antibody protection, but the robustness and durability of protection require further study.


Asunto(s)
Formación de Anticuerpos , COVID-19/inmunología , Intercambio Materno-Fetal , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes , Infecciones Asintomáticas , Femenino , Humanos , Embarazo , Estudios Prospectivos , Adulto Joven
19.
Cell Rep Med ; 1(3): 100040, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32835303

RESUMEN

SARS-CoV-2, the virus responsible for COVID-19, is causing a devastating worldwide pandemic, and there is a pressing need to understand the development, specificity, and neutralizing potency of humoral immune responses during acute infection. We report a cross-sectional study of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in a cohort of 44 hospitalized COVID-19 patients. RBD-specific IgG responses are detectable in all patients 6 days after PCR confirmation. Isotype switching to IgG occurs rapidly, primarily to IgG1 and IgG3. Using a clinical SARS-CoV-2 isolate, neutralizing antibody titers are detectable in all patients by 6 days after PCR confirmation and correlate with RBD-specific binding IgG titers. The RBD-specific binding data were further validated in a clinical setting with 231 PCR-confirmed COVID-19 patient samples. These findings have implications for understanding protective immunity against SARS-CoV-2, therapeutic use of immune plasma, and development of much-needed vaccines.

20.
J Exp Med ; 215(6): 1571-1588, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29739835

RESUMEN

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/citología , Nucleósidos/metabolismo , ARN Mensajero/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Antígenos/metabolismo , Lípidos/química , Macaca mulatta , Nanopartículas/química , Subunidades de Proteína/metabolismo , Factores de Tiempo , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...