Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 8: e59249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33244292

RESUMEN

BACKGROUND: The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people were involved in the data collection. NEW INFORMATION: Within 20 months, the participants accumulated 750,143 photo observations of 6,857 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country's biodiversity and a leading source of data on the current state of the national flora. About 87% of all project data, i.e. 652,285 observations, are available under free licences (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities.

2.
Int J Syst Evol Microbiol ; 69(9): 2687-2695, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31166161

RESUMEN

Two Gram-stain-negative strains, RCAM04680T and RCAM04685, were isolated from root nodules of the relict legume Caragana jubata (Pall.) Poir. originating from the south-western shore of Lake Khuvsgul (Mongolia). The 16S rRNA gene (rrs) sequencing data showed that these novel isolates belong to the genus Bosea and are phylogenetically closest to the type strains Bosea lathyri LMG 26379T, Bosea vaviloviae LMG 28367T, Bosea massiliensis LMG 26221T and Bosea lupini LMG 26383T (the rrs-similarity levels were 98.7-98.8 %). The recA gene of strain RCAM04680T showed the highest sequence similarity to the type strain B. lupini LMG 26383T (95.4 %), while its atpD gene was closest to that of B. lathyri LMG 26379T (94.4 %). The ITS, dnaK and gyrB sequences of this isolate were most similar to the B. vaviloviae LMG 28367T (86.8 % for ITS, 90.4 % for the other genes). The most abundant fatty acid was C18 : 1ω7c (40.8 %). The whole genomes of strains RCAM04680T and RCAM04685 were identical (100 % average nucleotide identity). The highest average nucleotide identity value (82.8 %) was found between the genome of strain RCAM04680T and B. vaviloviae LMG 28367T. The common nodABC genes required for legume nodulation were absent in both strains; however, some other symbiotic nol, nod, nif and fix genes were detected. Based on the genetic study, as well as analyses of the whole-cell fatty acid compositions and phenotypic properties, a new species, Boseacaraganae sp. nov. (type strain RCAM04680T (=LMG 31125T), is proposed.


Asunto(s)
Bradyrhizobiaceae/clasificación , Caragana/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Bradyrhizobiaceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Mongolia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
3.
Int J Syst Evol Microbiol ; 68(5): 1644-1651, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29620492

RESUMEN

Gram-negative strains Tri-36, Tri-38, Tri-48T and Tri-53 were isolated from root nodules of the relict legume Oxytropis triphylla (Pall.) Pers. originating from Zunduk Cape (Baikal Lake region, Russia). 16S rRNA gene sequencing showed that the novel isolates were phylogenetically closest to the type strains Phyllobacterium sophorae LMG 27899T, Phyllobacterium brassicacearum LMG 22836T, Phyllobacterium endophyticum LMG 26470T and Phyllobacterium bourgognense LMG 22837T while similarity levels between the isolates and the most closely related strain P. endophyticum LMG 26470T were 98.8-99.5 %. The recA and glnII genes of the isolates showed highest sequence similarities with P. sophorae LMG 27899T (95.4 and 89.5 %, respectively) and P. brassicacearum LMG 22836T (91.4 and 85.1 %, respectively). Comparative analysis of phenotypic properties between the novel isolates and the closest reference strains P. sophorae LMG 27899T, P. brassicacearum LMG 22836T and P. endophyticum LMG 26470T was performed using a microassay system. Average nucleotide identities between the whole genome sequences of the isolates Tri-38 and Tri-48T and P. sophorae LMG 27899T, P. brassicacearum LMG 22836T and P. endophyticum LMG 26470T ranged from 79.23 % for P. endophyticum LMG 26470T to 85.74 % for P. sophorae LMG 27899T. The common nodABC genes required for legume nodulation were absent from strains Tri-38 and Tri-48T, although some other symbiotic nod and fix genes were detected. On the basis of genotypic and phenotypic analysis, a novel species, Phyllobacterium zundukense sp. nov. (type strain Tri-48T=LMG 30371T=RCAM 03910T), is proposed.


Asunto(s)
Oxytropis/microbiología , Phyllobacteriaceae/clasificación , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Genes Bacterianos , Phyllobacteriaceae/genética , Phyllobacteriaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN , Simbiosis
4.
Mol Plant Microbe Interact ; 31(8): 833-841, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29498565

RESUMEN

Ten rhizobial strains were isolated from root nodules of a relict legume Oxytropis popoviana Peschkova. For identification of the isolates, sequencing of rrs, the internal transcribed spacer region, and housekeeping genes recA, glnII, and rpoB was used. Nine fast-growing isolates were Mesorhizobium-related; eight strains were identified as M. japonicum and one isolate belonged to M. kowhaii. The only slow-growing isolate was identified as a Bradyrhizobium sp. Two strains, M. japonicum Opo-242 and Bradyrhizobium sp. strain Opo-243, were isolated from the same nodule. Symbiotic genes of these isolates were searched throughout the whole-genome sequences. The common nodABC genes and other symbiotic genes required for plant nodulation and nitrogen fixation were present in the isolate Opo-242. Strain Opo-243 did not contain the principal nod, nif, and fix genes; however, five genes (nodP, nodQ, nifL, nolK, and noeL) affecting the specificity of plant-rhizobia interactions but absent in isolate Opo-242 were detected. Strain Opo-243 could not induce nodules but significantly accelerated the root nodule formation after coinoculation with isolate Opo-242. Thus, we demonstrated that taxonomically different strains of the archaic symbiotic system can be co-microsymbionts infecting the same nodule and promoting the nodulation process due to complementary sets of symbiotic genes.


Asunto(s)
Bradyrhizobium/genética , Mesorhizobium/genética , Oxytropis/microbiología , Nodulación de la Raíz de la Planta/genética , Simbiosis/genética , Bradyrhizobium/fisiología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Mesorhizobium/fisiología , Filogenia , Nodulación de la Raíz de la Planta/fisiología , Simbiosis/fisiología
5.
BMC Evol Biol ; 15: 193, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26376815

RESUMEN

BACKGROUND: Hybridization and introgression are said to occur relatively frequently in plants, and in particular among different species of willows. However, data on the actual frequency of natural hybridization and introgression is rare. Here, we report the first fine-scale genetic analysis of a contact zone shared between the three basket willow species, Salix dasyclados, S. schwerinii and S. viminalis in the vicinity of the Lake Baikal in Southern Siberia. Individuals were sampled in fourteen populations and classified as pure species or hybrids based on a set of morphological characters. They were then genotyped at 384 nuclear SNP and four chloroplast SSR loci. The STRUCTURE and NewHybrids softwares were used to estimate the frequency and direction of hybridization using genotypic data at the nuclear SNP loci. RESULTS: As many as 19 % of the genotyped individuals were classified as introgressed individuals and these were mainly encountered in the centre of the contact zone. All introgressed individuals were backcrosses to S. viminalis or S. schwerinii and no F1 or F2 hybrids were found. The rest of the genotyped individuals were classified as pure species and formed two clusters, one with S. schwerinii individuals and the other with S. viminalis and S. dasyclados individuals. The two clusters were significantly genetically differentiated, with F ST = 0.333 (0.282-0.382, p < 0.001). In contrast, for the chloroplast haplotypes, no genetic differentiation was observed as they were completely shared between the species. Based on morphological classification only 5 % of the individuals were classified as introgressed individuals, which was much less than what was detected using genotypic data. CONCLUSIONS: We have discovered a new willow hybrid zone with relatively high frequency of introgressed individuals. The low frequency of F1 hybrids indicates that ongoing hybridization is limited, which could be because of the presence of reproductive barriers or simply because the conditions are not favorable for hybridization. We further conclude that in order to get a complete picture of the species composition of a hybrid zone it is necessary to use a combination of morphological characters and genetic data from both nuclear and chloroplast markers.


Asunto(s)
Salix/anatomía & histología , Salix/genética , ADN de Plantas/genética , Genotipo , Hibridación Genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Salix/clasificación , Siberia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA