Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1316633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380088

RESUMEN

Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type. In moraine substrates, Actinomycetota and Cercozoa were the most abundant bacterial and eukaryotic phyla, whereas on gneiss, granite and marble substrates, Cyanobacteriota and Metazoa were the dominant bacterial and eukaryotic taxa. However, at lower taxonomic level, a distinct differentiation was observed within the Cyanobacteriota phylum depending on substrate type, with granite being dominated by the Nostocaceae family and marble by the Chroococcidiopsaceae family. Surprisingly, metazoans were relatively abundant according to the 18S rRNA dataset, even in samples from the most arid sites, such as moraines in Austkampane and Widerøefjellet ("Dry Valley"). Overall, our study shows that different substrate types support distinct microbial communities, and that mineral soil diversity is a major determinant of terrestrial microbial diversity in inland Antarctic nunataks and valleys.

2.
Sci Adv ; 9(46): eade7130, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976353

RESUMEN

Toward the poles, life on land is increasingly dominated by microorganisms, yet the evolutionary origin of polar microbiomes remains poorly understood. Here, we use metabarcoding of Arctic, sub-Antarctic, and Antarctic lacustrine benthic microbial communities to test the hypothesis that high-latitude microbiomes are recruited from a globally dispersing species pool through environmental selection. We demonstrate that taxonomic overlap between the regions is limited within most phyla, even at higher-order taxonomic levels, with unique deep-branching phylogenetic clades being present in each region. We show that local and regional taxon richness and net diversification rate of regionally restricted taxa differ substantially between polar regions in both microeukaryotic and bacterial biota. This suggests that long-term evolutionary divergence resulting from low interhemispheric dispersal and diversification in isolation has been a prominent process shaping present-day polar lake microbiomes. Our findings illuminate the distinctive biogeography of polar lake ecosystems and underscore that conservation efforts should include their unique microbiota.


Asunto(s)
Lagos , Microbiota , Filogenia , Evolución Biológica , Regiones Antárticas
3.
Environ Monit Assess ; 195(8): 988, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490187

RESUMEN

Pesticide use has increased in the Lake Tana sub-basin due to increased agricultural activity, potentially endangering nontargeted organisms. To assess its potential impact on fish health and fish-consuming human populations, pesticide concentrations in the fillet and liver tissue of three fish species, namely Labeobarbus megastoma, Labeobarbus tsanensis, and Oreochromis niloticus, were investigated in Lake Tana. Fish samples were taken from the lake near the rivers of Ribb and Gumara, which flow through agricultural areas where considerable amounts of pesticides have been applied. A total of 96 fish samples were collected. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) revealed the presence of ten pesticides. Pyrimethanil was frequently detected in 96% of liver and 65% of fillet samples at a median concentration of 33.9 µg kg-1 and 19.7 µg kg-1, respectively. The highest concentration of pyrimethanil was found in L. megastoma (1850.0 µg kg-1). Labeobarbus megastoma also had the highest concentration of oxamyl (507.0 µg kg-1) and flazasulfuron (60.1 µg kg-1) detected in the liver tissue. The highest concentration of carbaryl (56.5 µg kg-1) was found in the liver tissue of O. niloticus. Fish tissue samples from the two study sites contained pyrimethanil, oxamyl, carbaryl, and flazasulfuron. Only pyrimethanil showed a statistically significant difference between the two sites and the species L. megastoma and L. tsanensis. The amounts of pesticides found in the fish species pose no direct risk to the health of fish consumer human population. However, the results show that the lake ecosystem needs immediate attention and regular monitoring of the rising pesticide usage in the lake watershed.


Asunto(s)
Cíclidos , Plaguicidas , Animales , Humanos , Etiopía , Carbaril , Cromatografía Liquida , Ecosistema , Lagos , Espectrometría de Masas en Tándem , Monitoreo del Ambiente
4.
Microb Genom ; 9(7)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37417735

RESUMEN

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.


Asunto(s)
Cianobacterias , Metagenómica , Cianobacterias/genética , Lagos/microbiología , Metagenoma , Secuencia de Bases
5.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37197902

RESUMEN

The Arctic soil communities play a vital role in stabilizing and decomposing soil carbon, which affects the global carbon cycling. Studying the food web structure is critical for understanding biotic interactions and the functioning of these ecosystems. Here, we studied the trophic relationships of (microscopic) soil biota of two different Arctic spots in Ny-Ålesund, Svalbard, within a natural soil moisture gradient by combining DNA analysis with stable isotopes as trophic tracers. The results of our study suggested that the soil moisture strongly influenced the diversity of soil biota, with the wetter soil, having a higher organic matter content, hosting a more diverse community. Based on a Bayesian mixing model, the community of wet soil formed a more complex food web, in which bacterivorous and detritivorous pathways were important in supplying carbon and energy to the upper trophic levels. In contrast, the drier soil showed a less diverse community, lower trophic complexity, with the green food web (via unicellular green algae and gatherer organisms) playing a more important role in channelling energy to higher trophic levels. These findings are important to better understand the soil communities inhabiting the Arctic, and for predicting how the ecosystem will respond to the forthcoming changes in precipitation regimes.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Teorema de Bayes , Tundra , Regiones Árticas , Carbono/metabolismo , Microbiología del Suelo
6.
Sci Adv ; 7(38): eabh3233, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34524843

RESUMEN

Despite evidence for microbial endemism, an understanding of the impact of geological and paleoclimate events on the evolution of regional protist communities remains elusive. Here, we provide insights into the biogeographical history of Antarctic freshwater diatoms, using lacustrine fossils from mid-Miocene and Quaternary Antarctica, and dovetail this dataset with a global inventory of modern freshwater diatom communities. We reveal the existence of a diverse mid-Miocene diatom flora bearing similarities with several former Gondwanan landmasses. Miocene cooling and Plio-Pleistocene glaciations triggered multiple extinction waves, resulting in the selective depauperation of this flora. Although extinction dominated, in situ speciation and new colonizations ultimately shaped the species-poor, yet highly adapted and largely endemic, modern Antarctic diatom flora. Our results provide a more holistic view on the scale of biodiversity turnover in Neogene and Pleistocene Antarctica than the fragmentary perspective offered by macrofossils and underscore the sensitivity of lacustrine microbiota to large-scale climate perturbations.

7.
Sci Total Environ ; 795: 148640, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246139

RESUMEN

Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.


Asunto(s)
Lagos , Microplásticos , Bacterias , Farmacorresistencia Microbiana , Humanos , Plásticos , Prohibitinas
8.
Nat Commun ; 11(1): 2382, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404869

RESUMEN

Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms.


Asunto(s)
Biodiversidad , Diatomeas/crecimiento & desarrollo , Ecosistema , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Diatomeas/clasificación , Diatomeas/genética , Evolución Molecular , Geografía , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29547924

RESUMEN

The terrestrial Antarctic Realm has recently been divided into 16 Antarctic Conservation Biogeographic Regions (ACBRs) based on environmental properties and the distribution of biota. Despite their prominent role in the primary production and nutrient cycling in Antarctic lakes, cyanobacteria were only poorly represented in the biological dataset used to delineate these ACBRs. Here, we provide a first high-throughput sequencing insight into the spatial distribution of benthic cyanobacterial communities in Antarctic lakes located in four distinct, geographically distant ACBRs and covering a range of limnological conditions. Cyanobacterial community structure differed between saline and freshwater lakes. No clear bioregionalization was observed, as clusters of community similarity encompassed lakes from distinct ACBRs. Most phylotypes (77.0%) were related to cyanobacterial lineages (defined at ≥99.0% 16S rRNA gene sequence similarity) restricted to the cold biosphere, including lineages potentially endemic to Antarctica (55.4%). The latter were generally rare and restricted to a small number of lakes, while more ubiquitous phylotypes were generally abundant and present in different ACBRs. These results point to a widespread distribution of some cosmopolitan cyanobacterial phylotypes across the different Antarctic ice-free regions, but also suggest the existence of dispersal barriers both within and between Antarctica and the other continents.


Asunto(s)
Cianobacterias/aislamiento & purificación , Lagos/microbiología , Regiones Antárticas , Cianobacterias/clasificación , Cianobacterias/genética , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico 16S/genética
10.
FEMS Microbiol Ecol ; 92(9)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402710

RESUMEN

Antarctic soils are known to be oligotrophic and of having low buffering capacities. It is expected that this is particularly the case for inland high-altitude regions. We hypothesized that the bedrock type and the presence of macrobiota in these soils enforce a high selective pressure on their bacterial communities. To test this, we analyzed the bacterial community structure in 52 soil samples from the western Sør Rondane Mountains (Dronning Maud Land, East Antarctica), using the Illumina MiSeq platform in combination with ARISA fingerprinting. The samples were taken along broad environmental gradients in an area covering nearly 1000 km(2) Ordination and variation partitioning analyses revealed that the total organic carbon content was the most significant variable in structuring the bacterial communities, followed by pH, electric conductivity, bedrock type and the moisture content, while spatial distance was of relatively minor importance. Acidobacteria (Chloracidobacteria) and Actinobacteria (Actinomycetales) dominated gneiss derived mineral soil samples, while Proteobacteria (Sphingomonadaceae), Cyanobacteria, Armatimonadetes and candidate division FBP-dominated soil samples with a high total organic carbon content that were mainly situated on granite derived bedrock.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Acidobacteria/aislamiento & purificación , Actinobacteria/aislamiento & purificación , Regiones Antárticas , Bacterias/clasificación , Cianobacterias/aislamiento & purificación , Proteobacteria/aislamiento & purificación , Suelo/química
11.
FEMS Microbiol Ecol ; 92(6): fiw041, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26936447

RESUMEN

The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.


Asunto(s)
Acidobacteria/genética , Actinobacteria/genética , Bacteroidetes/genética , Chlorophyta/genética , Cianobacterias/genética , Hongos/genética , Proteobacteria/genética , Regiones Antárticas , Secuencia de Bases , Biodiversidad , Electroforesis en Gel de Gradiente Desnaturalizante , Ecosistema , Hongos/clasificación , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo
12.
J Phycol ; 51(6): 1172-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26987011

RESUMEN

The family Scenedesmaceae is a taxonomically complicated group due to its simple morphology, high phenotypic plasticity, and the presence of cryptic taxa. Over the years several taxonomic revisions, based on molecular data, affected the family. Here, we describe a new scenedesmacean species from Antarctica, Chodatodesmus australis, based on phylogenetic analyses of data from nuclear (ITS2 spacer, 18S rDNA), and plastid (rbcL, tufA) markers. Morphological (LM and SEM) and ultrastructural (TEM) observations, carried out both on the holotype of C. australis and on the generitype of Chodatodesmus, allow us to emend the original generic description of this genus. Our molecular and phylogenetic data also reveal the existence of a new monotypic genus, Flechtneria, inside the family Scenedesmaceae and lead to the taxonomic reassignment of some microalgal strains available in International Culture Collections to new taxa. Of the considered genomic regions, the tufA gene was the easiest to amplify and sequence and it showed the highest phylogenetic signal, even if the number of sequences already available for this marker in the public databases was considerably lower than for the other chosen loci. The rbcL gene also provided good phylogenetic signal, but its amplification and sequencing were generally more problematic. The nuclear markers gave lower phylogenetic signals, but the 18S rDNA allowed distinction at the genus level and the ITS2 spacer had the advantage that secondary structures could be considered in the analyses. The use of more than one molecular locus is suggested to obtain reliable results in the characterization of scenedesmacean strains.

13.
PLoS One ; 9(6): e97564, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24887330

RESUMEN

The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1-22.2%) and OTU (3.5-3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1-V2 and V3-V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number of OTUs could not be classified using the RDP reference database, suggesting the presence of a large amount of novel diversity.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/genética , Variación Genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN/métodos , Temperatura , Regiones Antárticas , Composición de Base/genética , Bases de Datos de Ácidos Nucleicos , Filogenia , ARN Ribosómico 16S/genética
14.
Protist ; 164(1): 101-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22554828

RESUMEN

Recent morphology-based studies indicate that freshwater diatom floras in the Antarctic comprise a significant share of endemics among a majority of apparently cosmopolitan species. Given the widespread (pseudo)cryptic species diversity in diatoms, we assessed the molecular divergence and temperature-dependent growth characteristics between Antarctic and non-Antarctic strains for two presumed species with a cosmopolitan distribution, namely Pinnularia borealis and Hantzschia amphioxys. Molecular phylogenies based on the plastid gene rbcL and the nuclear 28S rDNA (D1-D3 region) revealed that both taxa consist of multiple lineages, each including a distinct Antarctic lineage. A molecular clock estimates the origin of P. borealis at 35.8 (30-47) million years (Ma) ago, making this the oldest known diatom species complex. The Antarctic P. borealis lineage is estimated to have diverged 7.8 (2-15) Ma ago, after the geographical and thermal isolation of the Antarctic continent. Despite not being psychrophilic, the Antarctic lineages of P. borealis and H. amphioxys have a lower optimal growth temperature and upper lethal temperature than most lineages from more temperate regions, indicating niche differentiation. Together, this suggests that many presumed cosmopolitan Antarctic diatom species are in fact species complexes, possibly containing Antarctic endemics with low temperature preferences.


Asunto(s)
Diatomeas/clasificación , Agua Dulce/microbiología , Regiones Antárticas , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Diatomeas/citología , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Evolución Molecular , Microscopía , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico/genética , Ribulosa-Bifosfato Carboxilasa/genética , Análisis de Secuencia de ADN , Temperatura
15.
Proc Biol Sci ; 276(1673): 3591-9, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19625320

RESUMEN

Recent data revealed that metazoans such as mites and springtails have persisted in Antarctica throughout several glacial-interglacial cycles, which contradicts the existing paradigm that terrestrial life was wiped out by successive glacial events and that the current inhabitants are recent colonizers. We used molecular phylogenetic techniques to study Antarctic microchlorophyte strains isolated from lacustrine habitats from maritime and continental Antarctica. The 14 distinct chlorophycean and trebouxiophycean lineages observed point to a wide phylogenetic diversity of apparently endemic Antarctic lineages at different taxonomic levels. This supports the hypothesis that long-term survival took place in glacial refugia, resulting in a specific Antarctic flora. The majority of the lineages have estimated ages between 17 and 84 Ma and probably diverged from their closest relatives around the time of the opening of Drake Passage (30-45 Ma), while some lineages with longer branch lengths have estimated ages that precede the break-up of Gondwana. The variation in branch length and estimated age points to several independent but rare colonization events.


Asunto(s)
Biodiversidad , Eucariontes/genética , Eucariontes/fisiología , Filogenia , Regiones Antárticas , ADN de Plantas/genética , Ecosistema , Evolución Molecular , Cubierta de Hielo
16.
Ecology ; 88(8): 1924-31, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17824422

RESUMEN

There is a long-standing belief that microbial organisms have unlimited dispersal capabilities, are therefore ubiquitous, and show weak or absent latitudinal diversity gradients. In contrast, using a global freshwater diatom data set, we show that latitudinal gradients in local and regional genus richness are present and highly asymmetric between both hemispheres. Patterns in regional richness are explained by the degree of isolation of lake districts, while the number of locally coexisting diatom genera is highly constrained by the size of the regional diatom pool, habitat availability, and the connectivity between habitats within lake districts. At regional to global scales, historical factors explain significantly more of the observed geographic patterns in genus richness than do contemporary environmental conditions. Together, these results stress the importance of dispersal and migration in structuring diatom communities at regional to global scales. Our results are consistent with predictions from the theory of island biogeography and metacommunity concepts and likely underlie the strong provinciality and endemism observed in the relatively isolated diatom floras in the Southern Hemisphere.


Asunto(s)
Biodiversidad , Diatomeas/fisiología , Ecosistema , Biología Marina , Adaptación Fisiológica , Animales , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...