Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0292602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943812

RESUMEN

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure @ 15 t ha-1 (M1), poultry manure @ 6 t ha-1(M2), press mud @ 15 t ha-1(M3), rice straw compost @ 6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.


Asunto(s)
Oryza , Suelo , Suelo/química , Agricultura/métodos , Fertilizantes/análisis , Triticum , Estiércol , Nitrógeno/análisis
2.
Front Plant Sci ; 14: 1163528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360703

RESUMEN

Manganese (Mn) is an essential micronutrient in plants, and it is necessary for hydrolysis in photosystem II, chlorophyll biosynthesis, and also chloroplast breakdown. Limited Mn availability in light soil resulted in interveinal chlorosis, poor root development, and the development of fewer tillers, particularly staple cereals including wheat, while foliar Mn fertilizers were found efficient in improving crop yield as well as Mn use efficiency. In the above context, a study was conducted in consecutive two wheat growing seasons for screening of the most effective and economical Mn treatment for improving the yield and Mn uptake in wheat and to compare the relative effectiveness of MnCO3 against the recommended dose of MnSO4 for wheat. To fulfill the aims of the study, three manganese products, namely, 1) manganese carbonate MnCO3 (26% Mn w/w and 3.3% N w/w), 2) 0.5% MnSO4·H2O (30.5% Mn), and 3) Mn-EDTA solution (12% Mn), were used as experimental treatments. Treatments and their combinations were as follows: two levels of MnCO3 (26% Mn) @ 750 and 1,250 ml ha-1 were applied at the two stages (i.e., 25-30 and 35-40 days after sowing) of wheat, and three sprays each of 0.5% MnSO4 (30.5% Mn) and Mn-EDTA (12% Mn) solution were applied in other plots. The 2-year study showed that Mn application significantly increased the plant height, productive tillers plant-1, and 1,000 grain weight irrespective of fertilizer source. The results of MnSO4 for grain yield wheat as well as uptake of Mn were statistically at par with both levels (750 and 1,250 ml ha-1) of MnCO3 with two sprays at two stages of wheat. However, the application of Mn in the form of 0.5% MnSO4·H2O (30.5% Mn) was found more economical than MnCO3, while the mobilization efficiency index (1.56) was found maximum when Mn was applied in MnCO3 with two sprays (750 and 1,250 ml ha-1) in the two stages of wheat. Thus, the present study revealed that MnCO3 can be used as an alternative to MnSO4 to enhance the yield and Mn uptake of wheat.

3.
Sci Rep ; 13(1): 3506, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864063

RESUMEN

Mungbean [Vigna radiata L. (Wilczek)] is considered as an extremely nutritious crop possessing a high level of micronutrients, but their low bioavailability in the crop leads to micronutrient malnutrition in humans. Therefore, the present study was conducted to investigate the potential of nutrients viz. boron (B), zinc (Zn) and iron (Fe) biofortification on productivity, nutrient concentration and uptake as well as the economics of mungbean cultivation. In the experiment, the various combinations of RDF with ZnSO4.7H2O (0.5%), FeSO4.7H2O (0.5%) and borax (0.1%) were applied to mungbean variety ML 2056. The combined foliar application of Zn, Fe and B was highly efficient in increasing the yield of grain as well as straw in mungbean exhibiting maximum values i.e. 944 kg ha-1 and 6133 kg ha-1, respectively. Similar results for B, Zn and Fe concentration in grain (27.3 mg kg-1, 35.7 mg kg-1 and 187.1 mg kg-1, respectively) and straw (21.1 mg kg-1, 18.6 mg kg-1 and 376.1 mg kg-1, respectively) of mungbean were observed. Also, uptake of Zn and Fe by grain (31.3 g ha-1 and 164.4 g ha-1, respectively), as well as straw (113.7 g ha-1 and 2295.0 g ha-1, respectively), was maximum for the above treatment. Whereas, the B uptake was found to enhance significantly through the combined application of B, Zn and Fe, where the values 24.0 g ha-1 and 128.7 g ha-1 corresponded to grain and straw, respectively. Thus, combined use of ZnSO4.7H2O (0.5%) + FeSO4.7H2O (0.5%) and borax (0.1%) significantly improved the yield outcomes, the concentration of B, Zn and Fe, uptake and economic returns of mungbean cultivation to alleviate the B, Zn and Fe deficiency.


Asunto(s)
Vigna , Humanos , Boro , Zinc , Hierro , Biofortificación , Grano Comestible , Micronutrientes
4.
Heliyon ; 9(2): e13591, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36865444

RESUMEN

Micronutrients play a vital role in improving growth and performance of different crops. Management of soil micronutrients for better crop production needs sound understanding of their status and causes of variability. Therefore, in order to evaluate the changes in soil properties and micronutrient contents of soils, an experiment was conducted with soil samples from six soil depths i.e. 0-10, 10-20, 20-40,40-60, 60-80 and 80-100 cm of four prominent land-use systems viz. forest, horticulture, crop land and barren land. Amongst these, the maximum contents of OC (0.36%), clay (19.4%), DTPA-Zn (1.14 mg kg-1), Fe (11.78 mg kg-1), Mn (5.37 mg kg-1), Cu (0.85 mg kg-1) and Ni (1.44 mg kg_1) were observed in soils of forest land use system followed by horticulture, crop land and barren land, respectively. Also, soils of forest landpossessed 29.5, 21.3, 58.4, 51.8 and 44.0% higher DTPA-Zn, Fe, Mn, Cu and Ni as compared to crop land use system. Interactive influence of land use systems and soil depths on distribution of DTPA extractable micronutrients was found to be positive with maximum content at 0-10 cm depth of forest land use and lowest at 80-100 cm of barren land use system, respectively. Correlation analysis explicit positive and significant relationship of OC with DTPA Zn (r = 0.81), Fe (r = 0.79), Mn (r = 0.77), Cu (r = 0.84) andNi (r = 0.80), whereas the correlation results among DTPA micronutrients indicated the highest positivecorrelation of Ni with Cu (r = 0.95) and Mn (r = 0.93) followed by Fe with Zn (r = 0.93). Therefore, inclusion of forest and horticulture land use in crop lands or shift of land use from forest based to crop land resulted in renewal of degraded soil which could be beneficial for enhancing agricultural sustainability.

5.
Heliyon ; 9(3): e14514, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967980

RESUMEN

Integrated use of chemical fertilizers with organic manure is becoming a quite promising practice to maintain higher crop productivity and to manage soil health, which is otherwise deteriorated due to intensive cultivation and imbalanced fertilizer use. Thus, the present experiment was conducted for combined application of inorganic fertilizers and organic manures for higher yield and nutrient uptake in basmati rice as well as to restore soil health. The treatments applied in the present study involve T1: control, T2: Farmyard manure (15 t ha-1), T3: Poultry manure (6 t ha-1), T4: Press mud (15 t ha-1), T5: Rice straw compost (6 t ha-1), T6: Farmyard manure (15 t ha-1) + 50% N (recommended dose of nitrogen), T7: Poultry manure (6 t ha-1) + 50% N, T8: Press mud (15 t ha-1) + 50% N, T9: Rice straw compost (6 t ha-1) + 50% N, T10: 75% N, T11: Farmyard manure (15 t ha1) + 75% N, T12: Poultry manure (6 t ha-1) + 75% N, T13: Press mud (15 t ha-1) + 75% N, T14: Rice straw compost (6 t ha-1) + 75% N, T15: 100% N. The integrated use of organic manures and inorganic fertilizers significantly increased the grain and straw yield, macronutrients as well as micronutrients uptake in basmati due to the release of nutrients from decomposition of organic manures. Among different treatments, the addition of PM+75% N showed maximum grain yield, straw yield and sustainability yield index (44.53 q ha-1, 89.67 q ha-1 and 0.91 respectively) as well as the highest uptake of nitrogen (58.29 and 65.39 kg ha-1), phosphorus (25.04 and 23.24 kg ha-1) and potassium (15.26 and 118.95 kg ha-1) in grain and straw, respectively. Similar results were observed for zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) uptake under treatment involving PM+75% N with values 183.9, 26.18, 339.3 and 355.8 g ha-1 in grain and 205.3, 25.62, 2627.3 and 278 g ha-1 in straw, respectively. Additionally, correlation studies showed that the grain and straw yield of basmati exhibited a significantly positive correlation with soil P, Cu and Fe. The study suggested that the partial substitution of inorganic fertilizers with organic manures did not lower crop yield and nutrient uptake. Thus, integrated application of organic and inorganic fertilizers can be used for the sustainability of basmati-wheat system and to retain the soil fertility which is otherwise deteriorated with sole use of inorganic fertilizers.

6.
Front Plant Sci ; 14: 1133115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968399

RESUMEN

Chalk, an undesirable grain quality trait in rice, is primarily formed due to high temperatures during the grain-filling process. Owing to the disordered starch granule structure, air spaces and low amylose content, chalky grains are easily breakable during milling thereby lowering head rice recovery and its market price. Availability of multiple QTLs associated with grain chalkiness and associated attributes, provided us an opportunity to perform a meta-analysis and identify candidate genes and their alleles contributing to enhanced grain quality. From the 403 previously reported QTLs, 64 Meta-QTLs encompassing 5262 non-redundant genes were identified. MQTL analysis reduced the genetic and physical intervals and nearly 73% meta-QTLs were narrower than 5cM and 2Mb, revealing the hotspot genomic regions. By investigating expression profiles of 5262 genes in previously published datasets, 49 candidate genes were shortlisted on the basis of their differential regulation in at least two of the datasets. We identified non-synonymous allelic variations and haplotypes in 39 candidate genes across the 3K rice genome panel. Further, we phenotyped a subset panel of 60 rice accessions by exposing them to high temperature stress under natural field conditions over two Rabi cropping seasons. Haplo-pheno analysis uncovered haplotype combinations of two starch synthesis genes, GBSSI and SSIIa, significantly contributing towards the formation of grain chalk in rice. We, therefore, report not only markers and pre-breeding material, but also propose superior haplotype combinations which can be introduced using either marker-assisted breeding or CRISPR-Cas based prime editing to generate elite rice varieties with low grain chalkiness and high HRY traits.

7.
FEBS J ; 290(14): 3595-3613, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36861329

RESUMEN

OsMADS29 (M29) is a crucial regulator of seed development in rice. The expression of M29 is strictly regulated at transcriptional as well as post-transcriptional levels. The MADS-box proteins are known to bind to DNA as dimers. However, in the case of M29, the dimerization also plays a vital role in its localization into the nucleus. The factor(s) that affect oligomerization and nuclear transport of MADS proteins have not yet been characterized. By using BiFC in transgenic BY-2 cell lines and Yeast-2-hybrid assay (Y2H), we show that calmodulin (CaM) interacts with M29 in a Ca2+ -dependent manner. This interaction specifically takes place in the cytoplasm, probably in association with the endoplasmic reticulum. By generating domain-specific deletions, we show that both sites in M29 are involved in this interaction. Further, by using BiFC-FRET-FLIM, we demonstrate that CaM may also help in the dimerization of two M29 monomers. Since most MADS proteins have CaM binding domains, the interaction between these proteins could be a general regulatory mechanism for oligomerization and nuclear transport.


Asunto(s)
Oryza , Factores de Transcripción , Factores de Transcripción/genética , Calmodulina/genética , Calmodulina/metabolismo , Oryza/genética , Oryza/metabolismo , Semillas/genética , Semillas/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo
8.
Environ Geochem Health ; 45(12): 8897-8909, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35484423

RESUMEN

The study of soil cadmium (Cd) fractionation has become the need of the hour due to phytoextraction of Cd heavy metal by indigenous Brassica species of northwest India. The present study was conducted to explore the Cd speciation in soils treated with Cd (0, 5.0, 10.0, 20.0, 40.0, and 80.0 mg kg-1 soil) and synthetic chelate ethylene diamine tetraacetic acid (EDTA-0, 1.0 and 2.0 g kg-1 soil) planted under three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L). The studied Cd fractions viz. exchangeable and water-soluble (EX + WS), carbonate (CARB), organic matter (OM), Mn oxide (MnOX), amorphous Fe oxide (AFeOX), crystalline Fe oxide (CFeOX), and residual (RES) differed in their Cd content in soils under three investigated Brassica species. Among all plantations, B. juncea reduced the highest soil Cd content of EX + WS form which reflected its bioavailability. The Cd supplementation significantly enhanced the Cd concentration in all Cd forms with EX + WS Cd form exhibiting higher increase even at low Cd level (5.0 mg kg-1), whereas the EDTA addition did not influence Cd fractions. The application of EDTA @ 1.0 g kg-1 soil proved beneficial as it enhanced the metal mobility for plant extraction. All species positively significantly correlated (r = 0.648** to 0.747**) with all Cd fractions but except B. juncea all confronted reduction in their total biomass. In nutshell, it suggested that Brassica species having large plant biomass could be considered as a potential candidate for phytoremediation.


Asunto(s)
Cadmio , Contaminantes del Suelo , Ácido Edético , Cadmio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Planta de la Mostaza , Biodegradación Ambiental , Óxidos
9.
J Sci Food Agric ; 103(4): 1631-1643, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36424725

RESUMEN

Many developing countries are facing a silent increase in deficiency of micronutrients in forage crops that results in decreased levels of essential nutrients in animals. Micronutrients are essential not only for basic metabolic processes of forage crops but also for sustaining animal health. Forage productivity and quality are severely affected by soil micronutrients deficiencies, especially zinc and copper. This review summarizes the literature highlighting the significance of different methodologies used to increase the biomass and quality of forage so as to enhance the micronutrient content of the forage crops through biofortification. Biofortification is a promising and sustainable agriculture-based strategy to reduce micronutrient deficiency in crops. The experiments and trials conducted at different locations of the world showed that copper and zinc concentrations in animal fodders can be enhanced through the process of foliar application. Additionally, agronomic biofortification showed more promising results, and thus is an outstanding, fast, and cost-effective technique for the immediate enrichment of forage in order to overcome malnutrition in animals. © 2022 Society of Chemical Industry.


Asunto(s)
Biofortificación , Zinc , Animales , Biofortificación/métodos , Zinc/metabolismo , Cobre , Agricultura/métodos , Micronutrientes , Productos Agrícolas/metabolismo
10.
Front Plant Sci ; 13: 976391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092426

RESUMEN

Indian mustard (Brassica juncea L.) is an essential oilseed crop that offers important nutrients to human beings. However, the concurrent micronutrient deficiencies including boron (B), sulfur (S), and nitrogen (N) could pose a significant threat to public health. Therefore, this study was conducted at the Punjab Agricultural University, Ludhiana, with nine treatments, i.e., T1-Control (recommended NPK only), T2- borax (0.5%) at flowering, T3-borax (1.0%) at flowering,T4- borax (0.5%) + urea (1.0%) at flowering,T5-borax (1.0%) + urea (1.0%) at flowering, T6-borax (0.5%) at flowering + capsule formation, T7-borax (1.0%) at flowering + capsule formation, T8-borax (0.5%) + urea (1.0%) at flowering + capsule formation, T9-borax (1.0%) + urea (1.0%) at flowering + Capsule formation, replicated three times in a randomized block design for 2 years (2020-2021 and 2021-2022). The foliar application of borax (1.0%) + urea (1.0%) at the flowering and capsule formation stage (treatment T9) was highly efficient in increasing food quality parameters such as crude fiber, total soluble solids (TSS), and protein content with maximum values of 3.77, 24.9, and 27.53%, respectively. Also, maximum yields of seed as well as stover for treatment T9 were 1.376 and 6.625 kg ha-1, respectively. Similarly, the results for B, S, and N concentrations in seed (27.71 mg kg-1, 17.69 mg kg-1, and 2.35%), as well as stover (25.92 mg kg-1, 17.31 mg kg-1, and 0.33%), were maximum in treatment T9. Also, B, S, and N uptake by seed (38.18 g ha-1, 24.40 g ha-1, and 32.05 Kg ha-1) and stover (172.55 g ha-1, 115.44 g ha-1, and 21.99 Kg ha-1) were maximum for the treatment T9 involving borax (1.0%) + urea (1.0%) at the flowering and capsule formation stage. Whereas, the concentration and uptake decreased in the treatments involving the sole application of borax and urea. Therefore, the application of borax (1.0%) and urea (1.0%) at the flowering and capsule formation stage significantly improved the quality parameters, seed and stover yield, nutrient concentration, and uptake over control and could be used to alleviate the B, S, and N deficiency in Indian mustard.

11.
Molecules ; 27(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35684558

RESUMEN

Micronutrient deficiency is a major constraint for the growth, yield and nutritional quality of cowpea which results in nutritional disorders in humans. Micronutrients including molybdenum (Mo), iron (Fe) and zinc (Zn) play a pivotal role in crop nutrition, and their role in different metabolic processes in crops has been highlighted. In order to increase the nutritional quality of cowpea, a field experiment was conducted for two years in which the effect of Mo along with iron (Fe) and zinc (Zn) on productivity, nitrogen and micronutrient uptake, root length and the number of nodules in cowpea cultivation was investigated. It was found that the foliar application of Fe and Zn and their interaction with Mo application through seed priming as well as soil application displayed increased yield, nutrient concentration, uptake and growth parameters which helped to enhance the nutritional quality of cowpea for consumption by the human population. The results of the above experiments revealed that among all the treatments, the soil application of Mo combined with the foliar application of 0.5% each of FeSO4·7H2O and ZnSO4·7H2O (M2F3 treatment) enhanced the grain and stover yield of cowpea, exhibiting maximum values of 1402 and 6104.7 kg ha-1, respectively. Again, the M2F3 treatment resulted in higher Zn, Fe and Mo concentrations in the grain (17.07, 109.3 and 30.26 mg kg-1, respectively) and stover (17.99, 132.7 and 31.22 mg kg-1, respectively) of cowpea. Uptake of Zn, Fe and Mo by the grain (25.23, 153.3 and 42.46 g ha-1, respectively) as well as the stover (104.2, 809.9 and 190.6 g ha-1, respectively) was found to be maximum for the M2F3 treatment. The root length (30.5 cm), number of nodules per plant (73.0) and N uptake in grain and stover (55.39 and 46.15 kg ha-1) were also higher for this treatment. Overall, soil application of Mo along with the foliar application of FeSO4·7H2O (0.5%) and ZnSO4·7H2O (0.5%) significantly improved yield outcomes, concentration, uptake, root length, nodules plant-1 and N uptake of cowpea to alleviate the micronutrient deficiency.


Asunto(s)
Vigna , Zinc , Grano Comestible/química , Humanos , Hierro/metabolismo , Micronutrientes , Molibdeno/metabolismo , Suelo , Triticum/metabolismo , Vigna/metabolismo , Zinc/metabolismo
12.
Front Plant Sci ; 13: 850956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557721

RESUMEN

OsMADS29 (M29) is a seed-specific MADS-box transcription factor involved in programmed cell death of nucellar tissue and maintaining auxin:cytokinin homeostasis. It affects embryo and endosperm development and starch filling during seed development in rice. Its expression seems to be tightly regulated by developmental, spatial, and temporal cues; however, cis- and trans-regulatory factors that affect its expression are largely unknown. In silico analysis of the 1.7 kb upstream regulatory region (URR) consisting of 1,290 bp promoter and 425 bp 5'-UTR regions revealed several auxin-responsive and seed-specific cis-regulatory elements distributed across the URR. In this study, the analysis of four URR deletions fused to a downstream ß-glucuronidase (GUS) reporter in transgenic rice has revealed the presence of several proximal positive elements and a strong distal negative element (NE). The promoter regions containing auxin-responsive elements responded positively to the exogenous application of auxins to transgenic seedlings. The proximal positive elements are capable of driving reporter expression in both vegetative and reproductive tissues. In contrast, the NE strongly suppresses reporter gene expression in both vegetative and reproductive tissues. In a transient onion peel assay system, the NE could reduce the efficacy of a 2x CaMV 35S promoter by ∼90%. Our results indicate the existence of a complex array of positive and negative regulatory regions along with auxin-responsive elements guiding the development-dependent and spatial expression of M29.

13.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209127

RESUMEN

Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.


Asunto(s)
Biofortificación/métodos , Productos Agrícolas/química , Micronutrientes/análisis , Factores de Edad , Agricultura , Animales , Biotecnología , Fertilizantes , Seguridad Alimentaria , Alimentos Fortificados , Salud Global , Tecnología Química Verde , Humanos , Desnutrición/epidemiología , Desnutrición/etiología , Minerales/análisis , Minerales/química , Nanotecnología , Valor Nutritivo , Fitomejoramiento , Suelo/química
14.
Environ Sci Pollut Res Int ; 29(4): 6000-6009, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34431059

RESUMEN

Cadmium (Cd) metal extraction through efficient plant roots has attracted much attention as this methodology is environment-friendly and cost-effective. Brassica species are well known for their tolerance towards high Cd concentration in contaminated soils. The tolerance ability may vary among species; hence the assessment of this variability is mandatory for selecting Brassica species. For this purpose, a greenhouse pot experiment was carried out using three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L.). To evaluate the effect of chelating agent ethylenediamine tetraacetic acid (EDTA) on Cd uptake, EDTA (0, 1, and 2 g kg-1 soil) was supplemented along with Cd (0, 5, 10, 20, 40, and 80 mg kg-1 soil). Among different species, B. juncea possessed the highest root dry biomass and lowest root Cd concentration in untreated soil. Overall root dry biomass of all tested Brassica species reduced on increasing Cd and EDTA levels. The trend was appeared to be related to an increase in root Cd concentration on the supplementation of EDTA that formed a complex with the target metal contaminate and resulted in vacuolar sequestration. Roots of B. juncea showed maximum Cd accumulation and highest values at Cd and EDTA levels up to 20 mg kg-1 and 1 g kg-1 soil due to the combined effect of root biomass and Cd concentration in roots. Thus, present findings inferred that Cd and EDTA supplementation might prove as a feasible strategy to improve remediation of Cd-polluted soil using B. juncea as an efficient Cd accumulator.


Asunto(s)
Cadmio , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Suplementos Dietéticos , Ácido Edético , Planta de la Mostaza , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
15.
Molecules ; 26(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34946758

RESUMEN

Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.


Asunto(s)
Grano Comestible/efectos de los fármacos , Compuestos Ferrosos/farmacología , Fertilizantes/análisis , Lens (Planta)/efectos de los fármacos , Micronutrientes/farmacología , Sulfato de Zinc/farmacología , Biofortificación , Grano Comestible/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Lens (Planta)/metabolismo , Micronutrientes/química , Micronutrientes/metabolismo , Sulfato de Zinc/química , Sulfato de Zinc/metabolismo
16.
Molecules ; 26(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771108

RESUMEN

To achieve the nutritional target of human food, boron (B) has been described as an essential mineral in determining seed and theoretical oil yield of Sesamum indicum L. The research to increase its cultivation is garnering attention due to its high oil content, quality and its utilization for various purposes, which include human nutrition as well as its use in the food industry. For this, a two-year field experiment was performed at PAU, Punjab, India to determine the effect of different concentrations of foliar-applied B (20, 30 and 40 mg L-1) and different growth stages of crop, i.e., we measured the effects on agroeconomic indicators and certain quality parameters of sesame using different concentrations of B applied at the flowering and capsule formation stages as compared to using water spray and untreated plants. Water spray did not significantly affect the studied parameters. However, B application significantly increased the yield, uptake, antioxidant activity (AOA) and theoretical oil content (TOC) compared to those of untreated plants. The maximum increase in seed yield (26.75%), B seed and stover uptake (64.08% and 69.25%, respectively) as well as highest AOA (69.41%) and benefit to cost ratio (B:C ratio 2.63) was recorded when B was applied at 30 mg L-1 at the flowering and capsule formation stages. However, the maximum sesame yield and B uptake were recorded when B was applied at a rate of 30 mg L-1. A significant increase in TOC was also recorded with a B application rate of 30 mg L-1. For efficiency indices, the higher values of boron agronomic efficiency (BAE) and boron crop recovery efficiency (BCRE) were recorded when B was applied at 20 mg L-1 (5.25 and 30.56, respectively) and 30 mg L-1 (4.96 and 26.11, respectively) at the flowering and capsule formation stages. In conclusion, application of B @ 30 mg L-1 at the flowering and capsule formation stages seemed a viable technique to enhance yield, B uptake and economic returns of sesame.


Asunto(s)
Agricultura/economía , Boro/metabolismo , Desarrollo de la Planta , Sesamum/crecimiento & desarrollo , Sesamum/metabolismo , Algoritmos , Fenómenos Químicos , Minerales , Modelos Económicos , Modelos Teóricos , Aceite de Sésamo/análisis , Aceite de Sésamo/química
17.
J Vis Exp ; (178)2021 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-35001908

RESUMEN

Protein-protein interactions are an integral part of all biological processes in the cells as they play a crucial role in regulating, maintaining, and amending cellular functions. These interactions are involved in a wide range of phenomena such as signal transduction, pathogen response, cell-cell interactions, metabolic and developmental processes. In the case of transcription factors, these interactions may lead to oligomerization of subunits, sequestering in specific subcellular contexts such as the nucleus, cytoplasm, etc., which, in turn, might have a more profound effect on the expression of the downstream genes. Here, we demonstrate a methodology to visualize in vivo tripartite interaction using Bimolecular Fluorescence Complementation (BiFC) based Förster Resonance Energy Transfer (FRET) involving Fluorescence Lifetime Imaging (FLIM). Two of the proteins selected for this demonstration interact as BiFC partners, and their reconstituted fluorescence activity is used to assay FRET-FLIM with the third partner. Four to five-week-old growth-chamber-grown Nicotiana benthamiana plants have been used as the model plant system for this demonstration.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Factores de Transcripción , Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Mapeo de Interacción de Proteínas/métodos , Nicotiana/metabolismo , Factores de Transcripción/metabolismo
18.
Plant J ; 97(2): 221-239, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30537172

RESUMEN

In flowering plants, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1)/TERMINAL FLOWER 2 (TFL2) is known to interact with polycomb group (PcG) and non-PcG proteins and control developmental programs. LHP1/TFL2 is an ancient protein and has been characterized in the early-divergent plant Physcomitrella patens. However, interacting partners of PpLHP1 other than the chromomethylase PpCMT have not been identified to date. Also, while functional polycomb repressive complex 2 (PRC2) is known to exist in P. patens, there is no experimental evidence to support the existence of PRC1-like complexes in these mosses. In this study, using protein-protein interaction methods, transient expression assays and targeted gene knockout strategy, we report the conserved properties of LHP1/TFL2 using the Physcomitrella system. We show that a PRC1-like core complex comprising of PpLHP1 and the putative PRC1 Really Interesting New Gene (RING)-finger proteins can form in vivo. Also, the interaction between PpRING and the PRC2 subunit PpCLF further sheds light on the possible existence of combinatorial interactions between the Polycomb Repressive Complex (PRC) in early land plants. Based on the interaction between PpLHP1 and putative hnRNP PpLIF2-like in planta, we propose that the link between PpLHP1 regulation and RNA metabolic processes was established early in plants. The conserved subnuclear distribution pattern of PpLHP1 in moss protonema further provides insight into the manner in which LHP1/TFL2 are sequestered in the nucleoplasm in discrete foci. The PpLHP1 loss-of-function plants generated in this study share some of the pleiotropic defects with multiple aberrations reported in lhp1/tfl2. Taken together, this work documents an active role for PpLHP1 in epigenetic regulatory network in P. patens.


Asunto(s)
Bryopsida/genética , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Proteínas del Grupo Polycomb/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas Cromosómicas no Histona/genética , Embryophyta/genética , Embryophyta/metabolismo , Redes Reguladoras de Genes , Genes Reporteros , Mutación con Pérdida de Función , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas del Grupo Polycomb/genética , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
Histochem Cell Biol ; 147(1): 103-110, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27565968

RESUMEN

The precisely timed process of tapetum development and its degradation involving programmed cell death is an important molecular event during anther development. Through its degeneration, the tapetum not only provides nutritive substances to the developing microspores but also contributes to the pollen wall by way of sporopollenin, which is a complex mixture of biopolymers, containing long-chain fatty acids, phenylpropanoids, phenolics and traces of carotenoids. A number of dyes and staining methods have been used to visualize tapetal structure and its components by using light microscopy techniques, but none of these methods could differentially stain and thus distinguish tapetal cells from other cell types of anther wall. While analysing progression of tapetum development in different cell types in rice anthers, we discovered a unique property of periodic acid-Schiff (PAS) stain, which upon interaction with some specific component(s) in tapetal cells and developing microspores emits fluorescence at ~620 nm. In rice anthers, the PAS-associated fluorescence could be observed initially in tapetum and developing microspores, and subsequent to degeneration of tapetum, the fluorescence was found to emanate mainly from the pollen wall. We also show that PAS-dependent fluorescence in tapetal cells is distinct from the autofluorescence resulting from pollen wall components and is also not caused by interaction of PAS with pollen starch. Henceforth, this novel fluorescence property of PAS stain could prove to be a new tool in the toolkit of developmental biologists to analyse different aspects of tapetum development and its degeneration with little more ease and specificity.


Asunto(s)
Arabidopsis/química , Flores/química , Fluorescencia , Oryza/química , Reacción del Ácido Peryódico de Schiff , Arabidopsis/citología , Microscopía , Oryza/citología , Adhesión del Tejido , Fijación del Tejido
20.
Toxicology ; 355-356: 49-53, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27216426

RESUMEN

Data on toxicity of chemicals is usually reported as the LD50, or LC50, with the exposure time from experimental testing in the laboratory reported. But the exposure time is not considered to be a quantifiable variable which can be used to evaluate its importance in expressed toxicity, often described in general terms such as acute, chronic and so on. For the last hundred years Habers Rule has been successfully used to extrapolate from reported exposure times to other exposure times which may be needed for setting standards, health risk assessments and other applications. But it has limitations particularly in environmental applications where exposure levels are low and exposure times are relatively long. The Reduced Life Expectancy (RLE) model overcomes these problems and can be utilised under all exposure conditions. It can be expressed as ln(LT50)=-a (LC50)(ν)+b where the constants ν, a and b can be evaluated by fitting the model to experimental data on the LC50, and corresponding LT50, together with the Normal Life Expectancy (NLE) of the organism being considered as a data point when the LC50 is zero. The constant, ν, at a value of unity gives a linear relationship and where ν<1 the relationship has a concave shape. In our extensive evaluations of the RLE model for fish, invertebrates and mammals involving 115 data sets and with a wide range of organic and inorganic toxicants the RLE model gave correlation coefficients of >0.8 with 107 sets of data. The RLE model can be used to extrapolate from a limited data set on exposure times and corresponding LT50 values to any exposure time and corresponding LT50 value. The discrepancy between Haber's Rule and RLE model increases as the exposure time increases.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/toxicidad , Modelos Teóricos , Animales , Sustancias Peligrosas/administración & dosificación , Dosificación Letal Mediana , Esperanza de Vida , Medición de Riesgo/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...