Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34635596

RESUMEN

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2 When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

2.
J Air Waste Manag Assoc ; 71(7): 866-889, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33689601

RESUMEN

The Lake Michigan Ozone Study 2017 (LMOS 2017) in May and June 2017 enabled study of transport, emissions, and chemical evolution related to ozone air pollution in the Lake Michigan airshed. Two highly instrumented ground sampling sites were part of a wider sampling strategy of aircraft, shipborne, and ground-based mobile sampling. The Zion, Illinois site (on the coast of Lake Michigan, 67 km north of Chicago) was selected to sample higher NOx air parcels having undergone less photochemical processing. The Sheboygan, Wisconsin site (on the coast of Lake Michigan, 211 km north of Chicago) was selected due to its favorable location for the observation of photochemically aged plumes during ozone episodes involving southerly winds with lake breeze. The study encountered elevated ozone during three multiday periods. Daytime ozone episode concentrations at Zion were 60 ppb for ozone, 3.8 ppb for NOx, 1.2 ppb for nitric acid, and 8.2 µg m-3 for fine particulate matter. At Sheboygan daytime, ozone episode concentrations were 60 ppb for ozone, 2.6 ppb for NOx, and 3.0 ppb for NOy. To facilitate informed use of the LMOS 2017 data repository, we here present comprehensive site description, including airmass influences during high ozone periods of the campaign, overview of meteorological and pollutant measurements, analysis of continuous emission monitor data from nearby large point sources, and characterization of local source impacts from vehicle traffic, large point sources, and rail. Consistent with previous field campaigns and the conceptual model of ozone episodes in the area, trajectories from the southwest, south, and lake breeze trajectories (south or southeast) were overrepresented during pollution episodes. Local source impacts from vehicle traffic, large point sources, and rail were assessed and found to represent less than about 15% of typical concentrations measured. Implications for model-observation comparison and design of future field campaigns are discussed.Implications: The Lake Michigan Ozone Study 2017 (LMOS 2017) was conducted along the western shore of Lake Michigan, and involved two well-instrumented coastal ground sites (Zion, IL, and Sheboygan, WI). LMOS 2017 data are publicly available, and this paper provides detailed site characterization and measurement summary to enable informed use of repository data. Minor local source impacts were detected but were largely confined to nighttime conditions of less interest for ozone episode analysis and modeling. The role of these sites in the wider field campaign and their detailed description facilitates future campaign planning, informed data repository use, and model-observation comparison.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Lagos , Meteorología , Michigan , Ozono/análisis
3.
Bull Am Meteorol Soc ; 102(12): E2207-E2225, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35837596

RESUMEN

The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO x = NO + NO2) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 aircraft capturing NO2 and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO2 columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9-12 June, and 14-16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO2 emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NOx, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM2.5) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.

4.
Environ Sci Technol ; 54(19): 12521-12529, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32866385

RESUMEN

Dimethyl sulfide (DMS; CH3SCH3), a biogenically produced trace gas emitted from the ocean, accounts for a large fraction of natural sulfur released to the marine atmosphere. The oxidation of DMS in the marine boundary layer (MBL), via the hydrogen abstraction pathway, yields the short-lived methylthiomethylperoxy radical (MSP; CH3SCH2OO). In the remote MBL, unimolecular isomerization of MSP outpaces bimolecular chemistry leading to the efficient formation of hydroperoxymethyl thioformate (HPMTF; HOOCH2SCHO). Here, we report the first ground observations and diurnal profiles of HPMTF mixing ratios, vertical fluxes, and deposition velocities to the ocean surface. Average daytime HPMTF mixing ratios, fluxes, and deposition velocities were recorded at 12.1 pptv, -0.11 pptv m s-1, and 0.75 cm s-1, respectively. The deposition velocity of HPMTF is comparable to other soluble gas phase compounds (e.g., HCOOH and HNO3), resulting in a deposition lifetime of 30 h under typical windspeeds (3 m s-1). A box model analysis incorporating the current mechanistic understanding of DMS oxidation chemistry and geostationary satellite cloud imagery data suggests that the lifetime of HPMTF in the MBL at this sampling location is likely controlled by heterogeneous loss to aerosol and uptake to clouds in the morning and evening.


Asunto(s)
Atmósfera , Azufre , Aerosoles
5.
J Pept Sci ; 26(4-5): e3247, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32162463

RESUMEN

The effect of choline chloride on the conformational dynamics of the 11-mer repeat unit P1LEA-22 of group 3 Late Embryogenesis Abundant (G3LEA) proteins was studied. Circular dichroism data of aqueous solutions of P1LEA-22 revealed that the peptide favors a polyproline II (PPII) helix structure at low temperature, with increasing temperature promoting a gain of unstructured conformations. Furthermore, increases in sample FeCl3 or choline chloride concentrations causes a gain in PPII helical structure at low temperature. The potential role of PPII structure in intrinsically disordered and G3LEA proteins is discussed, including its ability to easily access other secondary structural conformations such as α-helix and ß-sheet, which have been observed for dehydrated G3LEA proteins. The observed effect of FeCl3 and choline chloride salts on P1LEA-22 suggests favorable cation interactions with the PPII helix, supporting ion sequestration as a G3LEA protein function. As choline chloride is suggested to improve salt tolerance and protect cell membrane in plants at low temperature, our results support adoption of the PPII structure as a possible damage-preventing measure of Late Embryogenesis Abundant proteins.


Asunto(s)
Cloruros/química , Colina/química , Compuestos Férricos/química , Proteínas de Plantas/química , Temperatura , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...