Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 84(1): 182-197, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34406445

RESUMEN

Keystone species or ecological engineers are vital to the health of an ecosystem; however, often, their low abundance or biomass present challenges for their discovery, identification, visualization and selection. We report the development of fluorescent in situ hybridization of transcript-annealing molecular beacons (FISH-TAMB), a fixation-free protocol that is applicable to archaea and bacteria. The FISH-TAMB method differs from existing FISH methods by the absence of fixatives or surfactants in buffers, the fast hybridization time of as short as 15 min at target cells' growth temperature, and the omission of washing steps. Polyarginine cell-penetrating peptides are employed to deliver molecular beacons (MBs) across prokaryotic cell walls and membranes, fluorescently labeling cells when MBs hybridize to target mRNA sequences. Here, the detailed protocol of the preparation and application of FISH-TAMB is presented. To demonstrate FISH-TAMB's ability to label intracellular mRNA targets, differentiate transcriptional states, detect active and rare taxa, and keep cell viability, labeling experiments were performed that targeted the messenger RNA (mRNA) of methyl-coenzyme M reductase A (mcrA) expressed in (1) Escherichia coli containing a plasmid with a partial mcrA gene of the methanogen Methanosarcina barkeri (E. coli mcrA+); (2) M. barkeri; and (3) an anaerobic methanotrophic (ANME) enrichment from a deep continental borehole. Although FISH-TAMB was initially envisioned for mRNA of any functional gene of interest without a requirement of prior knowledge of 16S ribosomal RNA (rRNA)-based taxonomy, FISH-TAMB has the potential for multiplexing and going beyond mRNA and thus is a versatile addition to the molecular ecologist's toolkit, with potentially widespread application in the field of environmental microbiology.


Asunto(s)
Metano , Microbiota , Archaea , ADN de Archaea/genética , Escherichia coli/genética , Hibridación Fluorescente in Situ/métodos , Metano/metabolismo , Oxidorreductasas/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
2.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563817

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the globe at unprecedented speed and is showing no signs of slowing down. The outbreak of coronavirus disease 2019 (COVID-19) has led to significant health burden in infected patients especially in those with underlying comorbidities. The aim of this study was to evaluate the correlation between comorbidities and their role in the exacerbation of disease in COVID-19 patients leading to fatal outcomes. A systematic review was conducted using data from MEDLINE, Scopus, Web of Science, and EMBASE databases published from 1 December 2019 to 15 September 2020. Fifty-three articles were included in the systematic review. Of those 53 articles, 8 articles were eligible for meta-analysis. Hypertension, obesity, and diabetes mellitus were identified to be the most prevalent comorbidities in COVID-19 patients. Our meta-analysis showed that cancer, chronic kidney diseases, diabetes mellitus, and hypertension were independently associated with mortality in COVID-19 patients. Chronic kidney disease was statistically the most prominent comorbidity leading to death. However, despite having high prevalence, obesity was not associated with mortality in COVID-19 patients.IMPORTANCE COVID-19 has plagued the world since it was first identified in December 2019. Previous systematic reviews and meta-analysis were limited by various factors such as the usage of non-peer reviewed data and were also limited by the lack of clinical data on a global scale. Comorbidities are frequently cited as risk factors for severe COVID-19 outcomes. However, the degree to which specific comorbidities impact the disease is debatable. Our study selection involves a global reach and covers all comorbidities that were reported to be involved in the exacerbation of COVID-19 leading to fatal outcomes, which allows us to identify the specific comorbidities that have higher risk in patients. The study highlights COVID-19 high-risk groups. However, further research should focus on the status of comorbidities and prognosis in COVID-19 patients.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2 , COVID-19/mortalidad , COVID-19/patología , Comorbilidad , Hospitalización , Humanos , Prevalencia , Factores de Riesgo , Resultado del Tratamiento
3.
Front Microbiol ; 11: 1451, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695089

RESUMEN

Sesotho is an indigenous cereal-based fermented drink traditionally produced in the mountain kingdom of Lesotho, Southern Africa. The present study sought to examine the microbial (bacterial and fungal) community composition of Sesotho at five fermentation stages in five different locations. Using culture-independent (Illumina sequencing) techniques it was found that the bacterial communities followed similar successional patterns during the fermentation processes, regardless of geographical location and recipe variation between breweries. The most abundant bacterial taxa belonged to the phyla Firmicutes (66.2% of the reads on average) and Proteobacteria (22.1%); the families Lactobacillaceae (54.9%), Enterobacteriaceae (14.4%) and Leoconostrocaceae (8.1%); and the genera Lactobacillus (54%), Leuconostoc (10.7%), Leptotrichia (8.5%), and Weissella (5.5%). Most fungal taxa were from the phyla Ascomycota (60.7%) and Mucoromycota (25.3%); the families Rhizopodaceae (25.3%), Nectriaceae (24.2%), Saccharomycetaceae (16%) and Aspergillaceae (6.7%); and the genera Rhizopus (25.3%), Saccharomyces (9.6%), and Aspergillus (2.5%). Lactic acid bacteria (LAB) such as Enterococcus, Pediococcus, Lactobacillus, Leuconostoc, and Wiesella; as well as yeasts belonging to the genus Saccharomyces, were dominant in all breweries during the production of Sesotho. Several pathogenic and food spoilage microorganisms (e.g., Escherichia, Shigella, Klebsiella, etc.) were also present, but the study demonstrated the safety potential of the Sesotho fermentation process, as these microbial groups decline throughout Sesotho production. The functional profiles of the different brewing steps showed that the process is dominated by chemoheterotrophic and fermentative metabolisms. This study reveals, for the first time, the complex microbial dynamics that occur during Sesotho production.

4.
J Mol Model ; 26(5): 112, 2020 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-32363443

RESUMEN

One of the co-author's details (Leon du Preez-lategaan) was printed incorrectly in the above publication. The correct details are provided below.

5.
J Mol Model ; 26(4): 87, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32219568

RESUMEN

The interaction of a single-chain variable fragment (scFv) directed against human tissue factor (TF) was predicted using an in silico approach with the aim to establish a most likely mechanism of inhibition. The structure of the TF inhibiting scFv (TFI-scFv) was predicted using homology modeling, and complementarity-determining regions (CDRs) were identified. The CDR was utilized to direct molecular docking between the homology model of TFI-scFv and the crystal structure of the extracellular domains of human tissue factor. The rigid-body docking model was refined by means of molecular dynamic (MD) simulations, and the most prevalent cluster was identified. MD simulations predicted improved interaction between TFI-scFv and TF and propose the formation of stable complex for duration of the 600-ns simulation. Analysis of the refined docking model suggests that the interactions between TFI-scFv would interfere with the allosterical activation of coagulation factor VII (FVII) by TF. This interaction would prevent the formation of the active TF:VIIa complex and in so doing inhibit the initiation phase of blood coagulation as observers during in vitro testing.


Asunto(s)
Anticuerpos Neutralizantes/química , Simulación de Dinámica Molecular , Anticuerpos de Cadena Única/química , Tromboplastina/química , Humanos
6.
Sci Rep ; 9(1): 14339, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586093

RESUMEN

The biorecovery of europium (Eu) from primary (mineral deposits) and secondary (mining wastes) resources is of interest due to its remarkable luminescence properties, important for modern technological applications. In this study, we explored the tolerance levels, reduction and intracellular bioaccumulation of Eu by a site-specific bacterium, Clostridium sp. 2611 isolated from Phalaborwa carbonatite complex. Clostridium sp. 2611 was able to grow in minimal medium containing 0.5 mM Eu3+. SEM-EDX analysis confirmed an association between Eu precipitates and the bacterium, while TEM-EDX analysis indicated intracellular accumulation of Eu. According to the HR-XPS analysis, the bacterium was able to reduce Eu3+ to Eu2+ under growth and non-growth conditions. Preliminary protein characterization seems to indicate that a cytoplasmic pyruvate oxidoreductase is responsible for Eu bioreduction. These findings suggest the bioreduction of Eu3+ by Clostridium sp. as a resistance mechanism, can be exploited for the biorecovery of this metal.


Asunto(s)
Bioacumulación , Clostridium/metabolismo , Europio/metabolismo , Microbiología del Suelo , Anaerobiosis , Clostridium/química , Clostridium/aislamiento & purificación , Europio/química , Microbiología Industrial , Minería , Oxidación-Reducción , Suelo/química
7.
Front Microbiol ; 10: 81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761115

RESUMEN

Rare earth metals are widely used in the production of many modern technologies. However, there is concern that supply cannot meet the growing demand in the near future. The extraction from low-grade sources such as geothermal fluids could contribute to address the increasing demand for these compounds. Here we investigated the interaction and eventual bioaccumulation of europium (Eu) by a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred times higher than typical concentrations found in the environment. Furthermore, Eu seems to stimulate the growth of T. scotoductus SA-01 at low (0.01-0.1 mM) concentrations. We also found, using TEM-EDX analysis, that the bacterium can accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the biorecovery of rare earth metals from geothermal fluids.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30676291

RESUMEN

Aliphatic and aromatic hydrocarbons are ubiquitous in the environment due to natural and anthropogenic processes. Under aerobic conditions hydrocarbons can be rapidly biodegraded but oxygenated environments often quickly become anaerobic when microbial respiration is coupled to contaminant oxidation. Most studies in literature usually focus on the initial microbial diversity of the hydrocarbon impacted environment and examine either aerobic or anaerobic conditions for enrichment. Hence, the aim of the present study was to enrich bacterial consortiums from two diesel impacted soil samples under both these conditions to assess the enrichment diversities and hydrocarbon degradation potentials. This would shed light upon how an environmental population shift would correlate to oxygen intrusion and depletion and still continue hydrocarbon degradation. Analysis of the 16S rRNA gene sequences showcases the different microbial populations that could emerge as the environmental factors change, resulting in different populations that are still capable of hydrocarbon degradation. Microbial diversity analysis also highlights the role of facultative anaerobic bacteria like Pseudomonas spp. and Citrobacter spp. in maintaining hydrocarbon degradation. This study shows that microorganisms capable of surviving under both oxic and anoxic (aerobic and anaerobic) conditions are the most crucial to the long term degradation of hydrocarbons in the environment.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Gasolina/análisis , Hidrocarburos/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo/química , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Hidrocarburos/metabolismo , ARN Ribosómico 16S/genética , Contaminantes del Suelo/metabolismo
9.
Protein Expr Purif ; 151: 62-71, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29894804

RESUMEN

The development of therapeutic antibodies in their various forms has been a constant challenge since the development of the first monoclonal antibodies in 1975. This is especially true for the development of therapeutic single chain variable (scFv) fragments in Escherichia coli. In a previous study the selection of a tissue factor inhibiting single chain variable fragment (TFI-scFv) isolated from the Thomlinson I + J phage libraries was described. Although the initial findings were promising, additional characterization of the antibody fragment and subsequent application was hampered due low protein yield. This study reports on: i) the improved expression of a previously low yielding TFI-scFv in the cytoplasm of E. coli BL21 (DE3) through modifications to the expression systems in conjunction with codon optimization ii) evaluation of two commercial methods of protein recovery: in vitro refolding and the utilization of cold shock expression systems in conjunction with E. coli SHuffle. Results showed that TFI-scFv could be expressed at higher levels in the cytoplasm of E. coli than previously achieved in the periplasm. Both the in vitro refolding and cold shock strategies were capable of producing functional TFI-scFv with varying degrees of success. These procedures could be applied to improve the production of other problematic low yielding scFv isolated from phage display repositories in order to facilitate their characterization.


Asunto(s)
Respuesta al Choque por Frío , Anticuerpos de Cadena Única/biosíntesis , Técnicas de Visualización de Superficie Celular , Codón , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Periplasma/metabolismo , Replegamiento Proteico , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Anticuerpos de Cadena Única/genética
10.
Front Microbiol ; 6: 833, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441844

RESUMEN

Stalactites (CaCO3 and salt) from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface), central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and observed, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, and DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria, and Eukarya in different combinations were detected for each layer. Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine species were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin of fracture fluids is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...