Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(13): 3454-3466, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132847

RESUMEN

The tropical upper troposphere and lower stratosphere (UTLS) region is dominated by aerosols and clouds affecting Earth's radiation budget and climate. Thus, satellites' continuous monitoring and identification of these layers is crucial for quantifying their radiative impact. However, distinguishing between aerosols and clouds is challenging, especially under the perturbed UTLS conditions during post-volcanic eruptions and wildfire events. Aerosol-cloud discrimination is primarily based on their disparate wavelength-dependent scattering and absorption properties. In this study, we use aerosol extinction observations in the tropical (15°N-15°S) UTLS from June 2017 to February 2021, available from the latest generation of the Stratospheric Aerosol and Gas Experiment (SAGE) instrument-SAGE III onboard the International Space Station (ISS) to study aerosols and clouds. During this period, the SAGE III/ISS provided better coverage over the tropics at additional wavelength channels (relative to previous SAGE missions) and witnessed several volcanic and wildfire events that perturbed the tropical UTLS. We explore the advantage of having an extinction coefficient at an additional wavelength channel (1550 nm) from the SAGE III/ISS in aerosol-cloud discrimination using a method based on thresholds of two extinction coefficient ratios, R 1 (520 nm/1020 nm) and R 2 (1020 nm/1550 nm). This method was proposed earlier by Kent et al. [Appl. Opt.36, 8639 (1997)APOPAI0003-693510.1364/AO.36.008639] for the SAGE III-Meteor-3M but was never tested for the tropical region under volcanically perturbed conditions. We call this method the Extinction Color Ratio (ECR) method. The ECR method is applied to the SAGE III/ISS aerosol extinction data to obtain cloud-filtered aerosol extinction coefficients, cloud-top altitude, and seasonal cloud occurrence frequency during the entire study period. Cloud-filtered aerosol extinction coefficient obtained using the ECR method revealed the presence of enhanced aerosols in the UTLS following volcanic eruptions and wildfire events consistent with the Ozone Mapping and Profiler Suite (OMPS) and space-borne lidar-Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The cloud-top altitude obtained from the SAGE III/ISS is within 1 km of the nearly co-located observations from OMPS and CALIOP. In general, the seasonal mean cloud-top altitude from the SAGE III/ISS events peaks during the December, January, and February months, with sunset events showing higher cloud tops than the sunrise events, indicating the seasonal and diurnal variation of the tropical convection. The seasonal altitude distribution of cloud occurrence frequency obtained from the SAGE III/ISS also agrees well with CALIOP observations within 10%. We show that the ECR method is a simple approach that relies on thresholds independent of the sampling period, providing cloud-filtered aerosol extinction coefficients uniformly for climate studies irrespective of the UTLS conditions. However, since the predecessor of SAGE III did not include a 1550 nm channel, the usefulness of this approach is limited to short-term climate studies after 2017.

2.
Chemosphere ; 326: 138421, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36935062

RESUMEN

Atmospheric aerosol optical, physical, and chemical properties play a fundamental role in the Earth's climate system. A better understanding of the processes involved in their formation, evolution, and interaction with radiation and the water cycle is critical. We report the analysis of atmospheric molecules/particles collected with a new sampling system that flew under regular weather balloons for the first time. The flight took place on January 18, 2022 from Reims (France). The samples were subsequently analyzed by high-resolution mass spectrometry (Orbitrap) to specifically infer hundreds of organic components present in 4 different layers from the troposphere to the stratosphere (up to 20 km). Additional measurements of O3, CO, and aerosol concentrations a few hours before this flight took place to contextualize the sampling. After separating common species found on each filter that might be common to atmospheric layers or residuals for contaminations, we found that each sample yields significant differences in the number and size of organic species detected that should reflect the unique composition of atmospheric layers. While tropospheric samples yield significantly oxidized and saturated components, with carbon numbers below 30 that might be explained by complex organics chemistry from local and distant source emissions, the upper tropospheric and stratospheric samples were associated with increased carbon numbers (C > 30), with a significantly reduced unsaturation number for the stratosphere, that might be induced by strong UV radiations. The multimodal distributions of carbon numbers in chemical formulas observed between 15 and 20 km suggest that oligomerization and growth of organic molecules may take place in aged air masses of tropical origin that are known to carry organic compounds even several km above the tropopause where their lifetime significantly increases. In addition, the presence of organics may also reflect the extended influence of wildfires smoke injected during the spring and summer in the NH hemisphere before the in situ observations and their long-lifetime in the upper troposphere and stratosphere.


Asunto(s)
Atmósfera , Clima , Atmósfera/química , Rayos Ultravioleta , Estaciones del Año , Aerosoles
3.
Sci Rep ; 11(1): 2714, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526810

RESUMEN

The Indian summer monsoon rainfall (ISMR) is vital for the livelihood of millions of people in the Indian region; droughts caused by monsoon failures often resulted in famines. Large volcanic eruptions have been linked with reductions in ISMR, but the responsible mechanisms remain unclear. Here, using 145-year (1871-2016) records of volcanic eruptions and ISMR, we show that ISMR deficits prevail for two years after moderate and large (VEI > 3) tropical volcanic eruptions; this is not the case for extra-tropical eruptions. Moreover, tropical volcanic eruptions strengthen El Niño and weaken La Niña conditions, further enhancing Indian droughts. Using climate-model simulations of the 2011 Nabro volcanic eruption, we show that eruption induced an El Niño like warming in the central Pacific for two consecutive years due to Kelvin wave dissipation triggered by the eruption. This El Niño like warming in the central Pacific led to a precipitation reduction in the Indian region. In addition, solar dimming caused by the volcanic plume in 2011 reduced Indian rainfall.

4.
Sci Rep ; 9(1): 10268, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311972

RESUMEN

Droughts have become more severe and recurrent over the Indian sub-continent during the second half of the twentieth century, leading to more severe hydro-climatic and socio-economic impacts over one of the most densely populated parts of the world. So far, droughts have mostly been connected to circulation changes concomitant with the abnormal warming over the Pacific Ocean, prevalently known as "El Niño". Here, exploiting observational data sets and a series of dedicated sensitivity experiments, we show that the severity of droughts during El Niño is amplified (17%) by changes in aerosols. The model experiments simulate the transport of boundary layer aerosols from South Asian countries to higher altitudes (12-18 km) where they form the Asian Tropopause Aerosol Layer (ATAL) (~ 60-120°E, 20-40°N). During El Niño, the anomalous overturning circulation from the East Asian region further enriches the thickness of aerosol layers in the ATAL over the northern part of South Asia. The anomalous aerosol loading in the ATAL reduces insolation over the monsoon region, thereby exacerbating the severity of drought by further weakening the monsoon circulation. Future increases in industrial emissions from both East and South Asia will lead to a wider and thicker elevated aerosol layer in the upper troposphere, potentially amplifying the severity of droughts.

5.
Atmos Meas Tech ; 11(3): 1459-1479, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33479568

RESUMEN

Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures - i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime - depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. As well, an enhanced strategy for filtering the radiation-induced noise from high energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved MERRA-2 model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3% lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne high spectral resolution lidar (HSRL) are reduced from 3.6% ± 2.2% in the version 3 data set to 1.6% ± 2.4 % in the version 4 release.

6.
J Geophys Res Atmos ; 121(18): 11104-11118, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29082118

RESUMEN

Volcanic eruptions are important causes of natural variability in the climate system at all time scales. Assessments of the climate impact of volcanic eruptions by climate models almost universally assume that sulfate aerosol is the only radiatively active volcanic material. We report satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite after the eruption of Mount Kelud (Indonesia) on 13 February 2014 of volcanic materials in the lower stratosphere. Using these observations along with in situ measurements with the Compact Optical Backscatter AerosoL Detector (COBALD) backscatter sondes and optical particle counters (OPCs) made during a balloon field campaign in northern Australia, we find that fine ash particles with a radius below 0.3 µm likely represented between 20 and 28% of the total volcanic cloud aerosol optical depth 3 months after the eruption. A separation of 1.5-2 km between the ash and sulfate plumes is observed in the CALIOP extinction profiles as well as in the aerosol number concentration measurements of the OPC after 3 months. The settling velocity of fine ash with a radius of 0.3 µm in the tropical lower stratosphere is reduced by 50% due to the upward motion of the Brewer-Dobson circulation resulting a doubling of its lifetime. Three months after the eruption, we find a mean tropical clear-sky radiative forcing at the top of the atmosphere from the Kelud plume near -0.08 W/m2 after including the presence of ash; a value ~20% higher than if sulfate alone is considered. Thus, surface cooling following volcanic eruptions could be affected by the persistence of ash and should be considered in climate simulations.

7.
Nat Commun ; 6: 7692, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26158244

RESUMEN

Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA