Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(34): e202400617, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38634399

RESUMEN

Fluorinated non-natural amino acids are attracting considerable research interest, especially in the biomedical field and in materials science, thanks to their ability to self-assemble into peculiar supramolecular structures. The conformational changes induced by the presence of fluorine atoms obviously affect their functions, as well as the biological activity of the deriving peptides and proteins. Here, we will briefly describe the main effects of fluorination on the aggregation behavior of such building blocks, focusing in particular on their improved tendency to form fibrils, and gels therefrom. Our aim is to underline the promising potential of fluorination as a tool to affect the self-assembly features of amino acids, both when used alone and when inserted into polypeptide sequences. The ability of fluorine to influence physical, chemical, and structural properties of these substrates offers the possibility to engineer bioinspired materials with specific and tunable functions.


Asunto(s)
Aminoácidos , Halogenación , Péptidos , Aminoácidos/química , Péptidos/química , Flúor/química
2.
Chemistry ; 29(55): e202302838, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37695086

RESUMEN

Invited for the cover of this issue is the Laboratory of Supramolecular and Bio-Nanomaterials, coordinated by Pierangelo Metrangolo, at the Politecnico di Milano, Italy. The image depicts the co-crystal formed by N-Fmoc-pentafluorophenylalanine and benzamide, which is also involved in the formation of their mixed hydrogels. Read the full text of the article at 10.1002/chem.202301743.

3.
Chemistry ; 29(55): e202301743, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37435732

RESUMEN

Supramolecular hydrogels formed by the self-assembly of N-Fmoc-l-phenylalanine derivatives are gaining relevance for several applications in the materials and biomedical fields. In the challenging attempt to predict or tune their properties, we selected Fmoc-pentafluorophenylalanine (1) as a model efficient gelator, and studied its self-assembly in the presence of benzamide (2), a non-gelator able to form strong hydrogen bonds with the amino acid carboxylic group. Equimolar mixtures of 1 and 2 in organic solvents afforded a 1 : 1 co-crystal thanks to the formation of an acid⋅⋅⋅amide heterodimeric supramolecular synthon. The same synthon occurred in the transparent gels formed by mixing the two components in 1 : 1 ratio in aqueous media, as revealed by structural, spectroscopic, and thermal characterizations performed on both the co-crystal powder and the lyophilized hydrogel. These findings revealed the possibility of modulating the properties of amino acid-based hydrogels by involving the gelator in the formation of a co-crystal. Such a crystal engineering-based approach is shown also to be useful for the time-delayed release of suitable bioactive molecules, when involved as hydrogel coformers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...