Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Breed Genet ; 141(2): 207-219, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38010317

RESUMEN

For decades, inbreeding in cattle has been evaluated using pedigree information. Nowadays, inbreeding coefficients can be obtained using genomic information such as runs of homozygosity (ROH). The aims of this study were to quantify ROH and heterozygosity-rich regions (HRR) in a subpopulation of Guzerá dual-purpose cattle, to examine ROH and HRR islands, and to compare inbreeding coefficients obtained by ROH with alternative genomic inbreeding coefficients. A subpopulation of 1733 Guzerá animals genotyped for 50k SNPs was used to obtain the ROH and HRR segments. Inbreeding coefficients by ROH (FROH ), by genomic relationship matrix based on VanRaden's method 1 using reference allele frequency in the population (FGRM ), by genomic relationship matrix based on VanRaden's method 1 using allele frequency fixed in 0.5 (FGRM_0.5 ), and by the proportion of homozygous loci (FHOM ) were calculated. A total of 15,660 ROH were identified, and the chromosome with the highest number of ROH was BTA6. A total of 4843 HRRs were identified, and the chromosome with the highest number of HRRs was BTA23. No ROH and HRR islands were identified according to established criteria, but the regions closest to the definition of an island were examined from 64 to 67 Mb of BTA6, from 36 to 37 Mb of BTA2 and from 0.50 to 1.25 Mb of BTA23. The genes identified in ROH islands have previously been associated with dairy and beef traits, while genes identified on HRR islands have previously been associated with reproductive traits and disease resistance. FROH was equal to 0.095 ± 0.084, and its Spearman correlation with FGRM was low (0.44) and moderate-high with FHOM (0.79) and with FGRM_0.5 (0.80). The inbreeding coefficients determined by ROH were higher than other cattle breeds' and higher than pedigree-based inbreeding in the Guzerá breed obtained in previous studies. It is recommended that future studies investigate the effects of inbreeding determined by ROH on the traits under selection in the subpopulation studied.


Asunto(s)
Genoma , Endogamia , Bovinos/genética , Animales , Homocigoto , Genoma/genética , Genotipo , Genómica/métodos , Polimorfismo de Nucleótido Simple
2.
Animal ; 15(2): 100084, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33712214

RESUMEN

The progenies of international bulls in diverse climatic conditions and management levels may lead to different expressions of their genetic potential resulting in a re-ranking of these bulls. Therefore, evaluate the presence of genotype by environment interaction (G×E) within and across countries is important to guide the decision-making on alternative selection strategies. Thus, a two-step reaction norm (RN) approach was used to investigate the presence of G×E in Portuguese and Brazilian Holstein cattle. In step 1, we performed a within-country genetic evaluation using an autoregressive model to obtain precorrected phenotypes and environmental gradients (herd test-day solutions, HTD levels). In step 2, the precorrected phenotypes were considered as two distinct traits in a bi-trait RN model to estimate variance components across HTD levels, genetic correlation between HTD levels in Portugal and Brazil, and RN of the estimated breeding values. Additionally, the genetic correlation between countries using a bi-trait random regression (RR) sire model was obtained. In step 1, genetic additive variance for milk yield (MY) in Portugal was 14.1% higher than in Brazil. For somatic cell score (SCS), the genetic additive variance in Portugal was 12.7% lower than in Brazil. Although similar heritability estimates for SCS were observed in both countries, MY heritabilities were 0.31 for Portugal and 0.23 for Brazil. Genetic correlations (SD) between both countries obtained using RR sire model were 0.78 (0.051) for MY and 0.75 (0.062) for SCS. In step 2, MY genetic correlations among HTD levels within countries were higher than 0.94 for Portugal and 0.98 for Brazil. Somatic cell score genetic correlations among HTD levels ranged from 0.70 to 0.99 for Portugal and from 0.84 to 0.99 for Brazil. The average (SD) of genetic correlation estimates between Portuguese and Brazilian HTD levels were 0.74 (0.009) for MY and 0.57 (0.060) for SCS. These results suggest the presence of G×E for MY and SCS of Holstein cattle between both countries. Although there was no indication of G×E between Brazilian herd environments, the low genetic correlation for SCS indicates potential re-ranking of bulls between extreme environmental gradient in Portugal. Overall, the results of this study evidence the importance of national and international genetic evaluation systems to assist dairy farmers in the selection of the best genotypes to obtain the expected returns from investments in imported semen and to realize genetic progress in dairy populations under local environmental conditions.


Asunto(s)
Interacción Gen-Ambiente , Leche , Animales , Brasil , Bovinos/genética , Femenino , Genotipo , Lactancia , Masculino , Modelos Genéticos , Fenotipo , Portugal
3.
Br Poult Sci ; 62(4): 474-484, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33624573

RESUMEN

1. Uniformity in animal products is an important aspect of the production system. Several studies have reported estimates of genetics on residual variance in different species, indicating that it could be exploited to improve uniformity by selection. Nevertheless, there are no reports about the possibilities of such a selection strategy in meat quail.2. Records of hatching weight (HW) and body weight at 42 days (W42) of female and male birds from two meat quail lines (UFV1 and UFV2) were analysed. A three-step genetic evaluation was used to investigate the effect of genetic variation on residual variance of HW and W42 in both lines. In Step 1, a single-trait model was fitted to the data. In Step 2, log-transformed squared estimated residuals (ln(ê2)) were evaluated for these traits. In Step 3, a multi-trait analysis was performed to estimate the genetic correlation between the additive genetic effects for HW, W42, and their respective ln(ê2).3. The heritability estimates ranged from 0.12 to 0.23 for HW and from 0.22 to 0.35 for W42. The estimated heritabilities for the residual part were low and ranged from 0.0003 to 0.02 for both traits, and the genetic coefficient of variation residual variance estimates ranged from 0.31 to 0.42 for HW and from 0.09 to 0.25 for W42. Genetic correlations between the means (HW and W42) and ln(ê2) values were both positive and did not differ from zero, indicating no association between mean and ln(ê2).4. In conclusion, the uniformity of HW and W42 could be improved by selecting for lower residual variance in both meat quail lines, but the accuracy of selection may be low due to low heritability for uniformity, mainly for W42.


Asunto(s)
Pollos , Codorniz , Animales , Teorema de Bayes , Peso Corporal/genética , Coturnix/genética , Femenino , Masculino , Carne , Codorniz/genética
4.
Animal ; 15(1): 100021, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33573936

RESUMEN

Nucleotides are important to cell growth and division and are crucial to the rapid proliferation of such cells as the intestinal mucosa and immune cells. Accordingly, the nucleotide requirements of animals are high during periods of rapid growth and periods of stress like post-weaning period. Thus, nucleotide supplementation may be a possible alternative to in-feed antibiotics as growth promoter in this phase. The study aimed to evaluate dietary nucleotide supplementation as an alternative to in-feed antibiotics on performance and gut health of weaned piglets. Ninety-six 21-day-old piglets, weighing 7.44 ±â€¯0.65 kg, were allocated into 1 of 3 treatments (8 pens per treatment; 4 pigs per pen) in a 14-day trial. Dietary treatments consisted of control: corn-soybean meal-based diet; nucleotides: control +2 g/kg of a nutritional additive with purified nucleotides; and antibiotic: control +0.8 g/kg of antibiotic growth promoter based on colistin and tylosin. Performance variables and fecal score were not affected (P > 0.05) by supplementing nucleotide or antibiotic. Nucleotides treatment had similar effect to antibiotic and superior to control (P < 0.05) on enhancing duodenum villus height, jejunum crypt depth, and reduction of Paneth cellular area. Duodenum and ileum of animals supplemented with nucleotides or antibiotics had higher (P < 0.05) number of proliferating cells than did those of control animals, whereas the jejunum of animals that received antibiotic diets presented more (P < 0.05) proliferating cells than either the nucleotides or control animals. Jejunum of nucleotide-treated piglets showed a greater number of apoptotic cells than those fed antibiotic or control diets (P < 0.05). Nucleotides and antibiotic treatments decreased the B lymphocyte counts in duodenum and ileum (P < 0.05) but increased in the jejunum (P < 0.05), when compared to the control treatment. Relative abundance of mitogen-activated protein kinases-6, haptoglobin, and tumor necrosis factor-α mRNA was not influenced (P > 0.05) by treatments. In the ileal, antibiotic supplementation reduced total bacteria quantification compared to nucleotide supplementation or the control (P < 0.05), whereas nucleotides supplementation increased enterobacteria proliferation compared to the antibiotic or control diets (P < 0.05). However, nucleotides and antibiotic reduced (P < 0.05) colon total bacteria quantification when compared to control. These results suggest that the nucleotides source used to weaned piglets improved gut health by modulating the local immune response and modulating intestinal mucosa development, and, therefore, nucleotides may be an alternative to antibiotics as growth promoters.


Asunto(s)
Alimentación Animal , Antibacterianos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Mucosa Intestinal , Nucleótidos , Porcinos , Destete
5.
Br Poult Sci ; 61(1): 3-9, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31640404

RESUMEN

1. The aim of this study was to investigate the associations between several carcass, performance and meat quality traits in broilers through factor analysis and use the latent variables (i.e. factors) as pseudo-phenotypes in genetic evaluations.2. Factors were extracted using the principal components method and varimax rotation algorithm. Genetic parameters were estimated via Bayesian inference under a multiple-trait animal model.3. All factors taken together explained 71% of the original variance of the data. The first factor, denominated as 'weight', was associated with carcass and body weight traits; and the second factor, defined as 'tenderness', represented traits related to water-holding capacity and shear force. The third factor, 'colour', was associated with traits related to meat colour, whereas the fourth, referenced as 'viscera', was related to heart, liver and abdominal fat.4. The four biological factors presented moderate to high heritability (ranging from 0.35 to 0.75), which may confer genetic gains in this population.5. In conclusion, it seems possible to reduce the number of traits in the genetic evaluation of broilers using latent variables derived from factor analysis.


Asunto(s)
Pollos , Carne/análisis , Animales , Teorema de Bayes , Análisis Factorial , Fenotipo
6.
Anim Genet ; 50(2): 150-153, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30644110

RESUMEN

Genome-wide association studies (GWASes) have been performed to search for genomic regions associated with residual feed intake (RFI); however inconsistent results have been obtained. A meta-analysis may improve these results by decreasing the false-positive rate. Additionally, pathway analysis is a powerful tool that complements GWASes, as it enables identification of gene sets involved in the same pathway that explain the studied phenotype. Because there are no reports on GWAS pathways-based meta-analyses for RFI in beef cattle, we used several GWAS results to search for significant pathways that may explain the genetic mechanism underlying this trait. We used an efficient permutation hypothesis test that takes into account the linkage disequilibrium patterns between SNPs and the functional feasibility of the identified genes over the whole genome. One significant pathway (valine, leucine and isoleucine degradation) related to RFI was found. The three genes in this pathway-methylcrotonoyl-CoA carboxylase 1 (MCCC1), aldehyde oxidase 1 (AOX1) and propionyl-CoA carboxylase alpha subunit (PCCA)-were found in three different studies. This same pathway was also reported in a transcriptome analysis from two cattle populations divergently selected for high and low RFI. We conclude that a GWAS pathway-based meta-analysis can be an appropriate method to uncover biological insights into RFI by combining useful information from different studies.


Asunto(s)
Bovinos/fisiología , Ingestión de Alimentos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Alimentación Animal/análisis , Animales , Bovinos/genética , Marcadores Genéticos
7.
J Anim Breed Genet ; 133(3): 187-96, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27174095

RESUMEN

We studied the effect of including GWAS results on the accuracy of single- and multipopulation genomic predictions. Phenotypes (backfat thickness) and genotypes of animals from two sire lines (SL1, n = 1146 and SL3, n = 1264) were used in the analyses. First, GWAS were conducted for each line and for a combined data set (both lines together) to estimate the genetic variance explained by each SNP. These estimates were used to build matrices of weights (D), which was incorporated into a GBLUP method. Single population evaluated with traditional GBLUP had accuracies of 0.30 for SL1 and 0.31 for SL3. When weights were employed in GBLUP, the accuracies for both lines increased (0.32 for SL1 and 0.34 for SL3). When a multipopulation reference set was used in GBLUP, the accuracies were higher (0.36 for SL1 and 0.32 for SL3) than in single-population prediction. In addition, putting together the multipopulation reference set and the weights from the combined GWAS provided even higher accuracies (0.37 for SL1, and 0.34 for SL3). The use of multipopulation predictions and weights estimated from a combined GWAS increased the accuracy of genomic predictions.


Asunto(s)
Peso Corporal , Estudio de Asociación del Genoma Completo , Sus scrofa/genética , Tejido Adiposo , Animales , Polimorfismo de Nucleótido Simple , Sus scrofa/clasificación , Sus scrofa/fisiología
8.
J Anim Sci ; 93(10): 4684-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26523561

RESUMEN

Pig breeding companies keep relatively small populations of pure sire and dam lines that are selected to improve the performance of crossbred animals. This design of the pig breeding industry presents challenges to the implementation of genomic selection, which requires large data sets to obtain highly accurate genomic breeding values. The objective of this study was to evaluate the impact of different reference sets (across population and multipopulation) on the accuracy of genomic breeding values in 3 purebred pig populations and to assess the potential of using crossbreed performance in genomic prediction. Data consisted of phenotypes and genotypes on animals from 3 purebred populations (sire line [SL] 1, = 1,146; SL2, = 682; and SL3, = 1,264) and 3 crossbred pig populations (Terminal cross [TER] 1, = 183; TER2, = 106; and TER3, = 177). Animals were genotyped using the Illumina Porcine SNP60 Beadchip. For each purebred population, within-, across-, and multipopulation predictions were considered. In addition, data from the paternal purebred populations were used as a reference set to predict the performance of crossbred animals. Backfat thickness phenotypes were precorrected for fixed effects and subsequently included in the genomic BLUP model. A genomic relationship matrix that accounted for the differences in allele frequencies between lines was implemented. Accuracies of genomic EBV obtained within the 3 different sire lines varied considerably. For within-population prediction, SL1 showed higher values (0.80) than SL2 (0.61) and SL3 (0.67). Multipopulation predictions had accuracies similar to within-population accuracies for the validation in SL1. For SL2 and SL3, the accuracies of multipopulation prediction were similar to the within-population prediction when the reference set was composed by 900 animals (600 of the target line plus 300 of another line). For across-population predictions, the accuracy was mostly close to zero. The accuracies of predicting crossbreed performance were similar for the 3 different crossbred populations (ranging from 0.25 to 0.29). In summary, the differences in accuracy of the within-population scenarios may be due to line divergences in heritability and genetic architecture of the trait. Within- and multipopulation predictions yield similar accuracies. Across-population prediction accuracy was negligible. The moderate accuracy of prediction of crossbreed performance appears to be a result of the relationship between the crossbreed and its parental lines.


Asunto(s)
Genoma , Modelos Genéticos , Porcinos/genética , Animales , Cruzamiento , Frecuencia de los Genes , Genómica , Genotipo , Hibridación Genética , Fenotipo , Polimorfismo de Nucleótido Simple
9.
J Anim Sci ; 93(7): 3313-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26440000

RESUMEN

Genomic selection is applied to dairy cattle breeding to improve the genetic progress of purebred (PB) animals, whereas in pigs and poultry the target is a crossbred (CB) animal for which a different strategy appears to be needed. The source of information used to estimate the breeding values, i.e., using phenotypes of CB or PB animals, may affect the accuracy of prediction. The objective of our study was to assess the direct genomic value (DGV) accuracy of CB and PB pigs using different sources of phenotypic information. Data used were from 3 populations: 2,078 Dutch Landrace-based, 2,301 Large White-based, and 497 crossbreds from an F1 cross between the 2 lines. Two female reproduction traits were analyzed: gestation length (GLE) and total number of piglets born (TNB). Phenotypes used in the analyses originated from offspring of genotyped individuals. Phenotypes collected on CB and PB animals were analyzed as separate traits using a single-trait model. Breeding values were estimated separately for each trait in a pedigree BLUP analysis and subsequently deregressed. Deregressed EBV for each trait originating from different sources (CB or PB offspring) were used to study the accuracy of genomic prediction. Accuracy of prediction was computed as the correlation between DGV and the DEBV of the validation population. Accuracy of prediction within PB populations ranged from 0.43 to 0.62 across GLE and TNB. Accuracies to predict genetic merit of CB animals with one PB population in the training set ranged from 0.12 to 0.28, with the exception of using the CB offspring phenotype of the Dutch Landrace that resulted in an accuracy estimate around 0 for both traits. Accuracies to predict genetic merit of CB animals with both parental PB populations in the training set ranged from 0.17 to 0.30. We conclude that prediction within population and trait had good predictive ability regardless of the trait being the PB or CB performance, whereas using PB population(s) to predict genetic merit of CB animals had zero to moderate predictive ability. We observed that the DGV accuracy of CB animals when training on PB data was greater than or equal to training on CB data. However, when results are corrected for the different levels of reliabilities in the PB and CB training data, we showed that training on CB data does outperform PB data for the prediction of CB genetic merit, indicating that more CB animals should be phenotyped to increase the reliability and, consequently, accuracy of DGV for CB genetic merit.


Asunto(s)
Cruzamiento , Genómica/métodos , Modelos Genéticos , Porcinos/genética , Animales , Femenino , Genoma , Genotipo , Reproducibilidad de los Resultados , Porcinos/fisiología
10.
Genet Mol Res ; 14(2): 6303-11, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26125833

RESUMEN

Knowledge of dominance effects should improve ge-netic evaluations, provide the accurate selection of purebred animals, and enable better breeding strategies, including the exploitation of het-erosis in crossbreeds. In this study, we combined genomic and pedi-gree data to study the relative importance of additive and dominance genetic variation in growth and carcass traits in an F2 pig population. Two GBLUP models were used, a model without a polygenic effect (ADM) and a model with a polygenic effect (ADMP). Additive effects played a greater role in the control of growth and carcass traits than did dominance effects. However, dominance effects were important for all traits, particularly in backfat thickness. The narrow-sense and broad-sense heritability estimates for growth (0.06 to 0.42, and 0.10 to 0.51, respectively) and carcass traits (0.07 to 0.37, and 0.10 to 0.76, respec-tively) exhibited a wide variation. The inclusion of a polygenic effect in the ADMP model changed the broad-sense heritability estimates only for birth weight and weight at 21 days of age.


Asunto(s)
Peso al Nacer/genética , Genómica , Herencia Multifactorial/genética , Porcinos/genética , Animales , Cruzamiento , Variación Genética , Carne , Linaje , Porcinos/crecimiento & desarrollo
11.
J Anim Sci ; 91(8): 3493-501, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23736062

RESUMEN

Linkage disequilibrium (LD) across the genome is critical information for association studies and genomic selection because it determines the number of SNP that should be used for a successful association analysis and genomic selection. Linkage disequilibrium also influences the accuracy of genomic breeding values. Some studies have demonstrated that SNP in strong LD are organized into discrete blocks of haplotypes, which are separated by possibly hot spots of recombination. To reduce the number of markers needed to be genotyped for association mapping, a set of SNP can be selected that labels all haplotype blocks. We estimated the LD, calculated the average haplotype block size for 6 pig lines, and compared the block size between lines. Six commercial pig lines were genotyped using the Illumina PorcineSNP60 (number of markers M = 62,163) Genotyping BeadChip (Illumina Inc.); on average, a panel of 37,623 SNP with an average minor allelic frequency (MAF) of 0.283 was included in the analysis. The LD declined as a function of distance. All pig lines had an average r(2) above 0.3 for markers 100 to 150 apart. The estimated average block size was 394.885 kb, and blocks between 100 and 400 kb were most prominent (49.96%) in all lines. These results showed that the extent of LD in pigs is much larger than in the cattle population, in accordance with the genetic map length of pigs, which is much shorter than cattle. The evaluated lines have 2,640 to 3,037 blocks, covering 45% of the pig genome, on average. Differences in haplotype block size between lines were observed for some chromosomes (i.e., SSC 3, 5, 7, 13, 14, and 18), which provide a direction for future studies of haplotype block conservation or divergence across lines.


Asunto(s)
Haplotipos , Desequilibrio de Ligamiento , Porcinos/genética , Animales , Cruzamiento , Femenino , Genómica , Masculino , Polimorfismo de Nucleótido Simple
12.
J Anim Breed Genet ; 128(1): 28-34, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21214641

RESUMEN

Seventy-two pigs of three genetic groups (Brazilian indigenous breed Piau, Commercial line and Crossbred) of both sexes were slaughtered at four live weights (30, 60, 90 and 120 kg). Intramuscular fat (IMF) content in Longissimus dorsi muscle of each animal was extracted and correlated with candidate gene mRNA expression (ATN1, EEF1A2, FABP3, LDLR, MGP, OBSCN, PDHB, TRDN and RYR1). Within slaughter weight of 120 kg, Piau and Crossbred pigs showed higher IMF content (p < 0.05) than commercial animals, with 2.48, 2.08 and 1.00% respectively. Barrows presented higher values of IMF (p < 0.05) than gilts (1.54 and 1.30% respectively). Gene expression of EEF1A2, FABP3, LDLR, OBSCN, PDHB, TRDN and RYR1 were correlated with IMF (p < 0.05) using the whole dataset. For Piau data only, expression of FABP3, LDLR, MGP, OBSCN, PDHB, TRDN and RYR1 showed correlation with IMF (p < 0.05). Genes that have important roles in lipid transportation inside the cell (FABP3) and tissues (LDLR) showed correlation with IMF of, respectively, 0.68 and 0.63 using the whole data set, and 0.90 and 0.91 using data from Piau animals. The highly positive correlation of the LDLR and FAPB3 expression with IMF content may confirm that these genes are important for fat deposition in the porcine L. dorsi muscle.


Asunto(s)
Adiposidad/genética , Expresión Génica , Porcinos/genética , Animales , Cruzamiento , Femenino , Perfilación de la Expresión Génica , Genes , Metabolismo de los Lípidos/genética , Masculino , ARN Mensajero/metabolismo , Porcinos/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...