Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(8): eaax2926, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32128392

RESUMEN

Although phenotypic plasticity is a widespread phenomenon, its implications for species responses to climate change are not well understood. For example, toxic cyanobacteria can form dense surface blooms threatening water quality in many eutrophic lakes, yet a theoretical framework to predict how phenotypic plasticity affects bloom development at elevated pCO2 is still lacking. We measured phenotypic plasticity of the carbon fixation rates of the common bloom-forming cyanobacterium Microcystis. Our results revealed a 1.8- to 5-fold increase in the maximum CO2 uptake rate of Microcystis at elevated pCO2, which exceeds CO2 responses reported for other phytoplankton species. The observed plasticity was incorporated into a mathematical model to predict dynamic changes in cyanobacterial abundance. The model was successfully validated by laboratory experiments and predicts that acclimation to high pCO2 will intensify Microcystis blooms in eutrophic lakes. These results indicate that this harmful cyanobacterium is likely to benefit strongly from rising atmospheric pCO2.


Asunto(s)
Adaptación Fisiológica , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Cianobacterias/fisiología , Eutrofización , Algoritmos , Cinética , Lagos , Modelos Biológicos , Reproducibilidad de los Resultados
2.
Ecology ; 101(3): e02951, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840230

RESUMEN

The color of many lakes and seas is changing, which is likely to affect the species composition of freshwater and marine phytoplankton communities. For example, cyanobacteria with phycobilisomes as light-harvesting antennae can effectively utilize green or orange-red light. However, recent studies show that they use blue light much less efficiently than phytoplankton species with chlorophyll-based light-harvesting complexes, even though both phytoplankton groups may absorb blue light to a similar extent. Can we advance ecological theory to predict how these differences in light-harvesting strategy affect competition between phytoplankton species? Here, we develop a new resource competition model in which the absorption and utilization efficiency of different colors of light are varied independently. The model was parameterized using monoculture experiments with a freshwater cyanobacterium and green alga, as representatives of phytoplankton with phycobilisome-based vs. chlorophyll-based light-harvesting antennae. The parameterized model was subsequently tested in a series of competition experiments. In agreement with the model predictions, the green alga won the competition in blue light whereas the cyanobacterium won in red light, irrespective of the initial relative abundances of the species. These results are in line with observed changes in phytoplankton community structure in response to lake brownification. Similarly, in marine waters, the model predicts dominance of Prochlorococcus with chlorophyll-based light-harvesting complexes in blue light but dominance of Synechococcus with phycobilisomes in green light, with a broad range of coexistence in between. These predictions agree well with the known biogeographical distributions of these two highly abundant marine taxa. Our results offer a novel trait-based approach to understand and predict competition between phytoplankton species with different photosynthetic pigments and light-harvesting strategies.


Asunto(s)
Cianobacterias , Fitoplancton , Color , Océanos y Mares , Ficobilisomas
3.
Nat Rev Microbiol ; 16(8): 471-483, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29946124

RESUMEN

Cyanobacteria can form dense and sometimes toxic blooms in freshwater and marine environments, which threaten ecosystem functioning and degrade water quality for recreation, drinking water, fisheries and human health. Here, we review evidence indicating that cyanobacterial blooms are increasing in frequency, magnitude and duration globally. We highlight species traits and environmental conditions that enable cyanobacteria to thrive and explain why eutrophication and climate change catalyse the global expansion of cyanobacterial blooms. Finally, we discuss management strategies, including nutrient load reductions, changes in hydrodynamics and chemical and biological controls, that can help to prevent or mitigate the proliferation of cyanobacterial blooms.


Asunto(s)
Cambio Climático , Cianobacterias/fisiología , Ecosistema , Eutrofización , Agua Dulce/microbiología , Agua de Mar/microbiología
4.
J Exp Bot ; 68(14): 3815-3828, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28207058

RESUMEN

Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations.


Asunto(s)
Dióxido de Carbono/metabolismo , Chlorophyta/fisiología , Microcystis/fisiología , Modelos Biológicos
5.
Proc Natl Acad Sci U S A ; 113(33): 9315-20, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482094

RESUMEN

Rising atmospheric CO2 concentrations are likely to affect many ecosystems worldwide. However, to what extent elevated CO2 will induce evolutionary changes in photosynthetic organisms is still a major open question. Here, we show rapid microevolutionary adaptation of a harmful cyanobacterium to changes in inorganic carbon (Ci) availability. We studied the cyanobacterium Microcystis, a notorious genus that can develop toxic cyanobacterial blooms in many eutrophic lakes and reservoirs worldwide. Microcystis displays genetic variation in the Ci uptake systems BicA and SbtA, where BicA has a low affinity for bicarbonate but high flux rate, and SbtA has a high affinity but low flux rate. Our laboratory competition experiments show that bicA + sbtA genotypes were favored by natural selection at low CO2 levels, but were partially replaced by the bicA genotype at elevated CO2 Similarly, in a eutrophic lake, bicA + sbtA strains were dominant when Ci concentrations were depleted during a dense cyanobacterial bloom, but were replaced by strains with only the high-flux bicA gene when Ci concentrations increased later in the season. Hence, our results provide both laboratory and field evidence that increasing carbon concentrations induce rapid adaptive changes in the genotype composition of harmful cyanobacterial blooms.


Asunto(s)
Adaptación Fisiológica , Dióxido de Carbono/metabolismo , Microcystis/fisiología , Carbono/metabolismo , Microcystis/genética
6.
Harmful Algae ; 54: 145-159, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-28073473

RESUMEN

Climate change is likely to stimulate the development of harmful cyanobacterial blooms in eutrophic waters, with negative consequences for water quality of many lakes, reservoirs and brackish ecosystems across the globe. In addition to effects of temperature and eutrophication, recent research has shed new light on the possible implications of rising atmospheric CO2 concentrations. Depletion of dissolved CO2 by dense cyanobacterial blooms creates a concentration gradient across the air-water interface. A steeper gradient at elevated atmospheric CO2 concentrations will lead to a greater influx of CO2, which can be intercepted by surface-dwelling blooms, thus intensifying cyanobacterial blooms in eutrophic waters. Bloom-forming cyanobacteria display an unexpected diversity in CO2 responses, because different strains combine their uptake systems for CO2 and bicarbonate in different ways. The genetic composition of cyanobacterial blooms may therefore shift. In particular, strains with high-flux carbon uptake systems may benefit from the anticipated rise in inorganic carbon availability. Increasing temperatures also stimulate cyanobacterial growth. Many bloom-forming cyanobacteria and also green algae have temperature optima above 25°C, often exceeding the temperature optima of diatoms and dinoflagellates. Analysis of published data suggests that the temperature dependence of the growth rate of cyanobacteria exceeds that of green algae. Indirect effects of elevated temperature, like an earlier onset and longer duration of thermal stratification, may also shift the competitive balance in favor of buoyant cyanobacteria while eukaryotic algae are impaired by higher sedimentation losses. Furthermore, cyanobacteria differ from eukaryotic algae in that they can fix dinitrogen, and new insights show that the nitrogen-fixation activity of heterocystous cyanobacteria can be strongly stimulated at elevated temperatures. Models and lake studies indicate that the response of cyanobacterial growth to rising CO2 concentrations and elevated temperatures can be suppressed by nutrient limitation. The greatest response of cyanobacterial blooms to climate change is therefore expected to occur in eutrophic and hypertrophic lakes.


Asunto(s)
Dióxido de Carbono/metabolismo , Cianobacterias/fisiología , Calentamiento Global , Eutrofización , Lagos
7.
PLoS One ; 9(8): e104325, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25119996

RESUMEN

Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.


Asunto(s)
Dióxido de Carbono/análisis , Modelos Teóricos , Fitoplancton/crecimiento & desarrollo , Biomasa , Dióxido de Carbono/metabolismo , Eutrofización , Concentración de Iones de Hidrógeno , Lagos , Fitoplancton/metabolismo
8.
Ecol Appl ; 24(5): 1235-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25154110

RESUMEN

Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte Ochromonas as intraguild predator and the harmful cyanobacterium Microcystis aeruginosa as its prey. Ochromonas can grow photoautotrophically, but can also graze efficiently on Microcystis. Hence, it competes with its prey for inorganic resources. We developed a mathematical model and parameterized it for our experimental food web. The model predicts dominance of Microcystis at low nutrient loads, coexistence of both species at intermediate nutrient loads, and dominance of Ochromonas but a strong decrease of Microcystis at high nutrient loads. We tested these theoretical predictions in chemostat experiments supplied with three different nitrogen concentrations. Ochromonas initially suppressed the Microcystis abundance by > 97% compared to the Microcystis monocultures. Thereafter, however, Microcystis gradually recovered to -20% of its monoculture abundance at low nitrogen loads, but to 50-60% at high nitrogen loads. Hence, Ochromonas largely lost control over the Microcystis population at high nitrogen loads. We explored several mechanisms that might explain this deviation from theoretical predictions, and found that intraspecific interference at high Ochromonas densities reduced their grazing rates on Microcystis. These results illustrate the potential of intraguild predation to control pest species, but also show that the effectiveness of their biological control can be reduced in productive environments.


Asunto(s)
Cianobacterias , Cadena Alimentaria , Modelos Teóricos , Animales , Chrysophyta , Conducta Predatoria , Especificidad de la Especie
9.
Ecol Lett ; 17(8): 951-60, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24813339

RESUMEN

Although rising CO2 concentrations are thought to promote the growth and alter the carbon : nutrient stoichiometry of primary producers, several studies have reported conflicting results. To reconcile these contrasting results, we tested the following hypotheses: rising CO2 levels (1) will increase phytoplankton biomass more at high nutrient loads than at low nutrient loads, but (2) will increase their carbon : nutrient stoichiometry more at low than at high nutrient loads. We formulated a mathematical model to predict dynamic changes in phytoplankton population density, elemental stoichiometry and inorganic carbon chemistry in response to rising CO2 . The model was tested in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa. The model predictions and experimental results confirmed the hypotheses. Our findings provide a novel theoretical framework to understand and predict effects of rising CO2 concentrations on primary producers and their nutritional quality as food for herbivores under different nutrient conditions.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Microcystis/fisiología , Modelos Biológicos , Fenómenos Fisiológicos de la Nutrición , Densidad de Población , Dinámica Poblacional
10.
ISME J ; 8(3): 589-600, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24132080

RESUMEN

Rising CO2 levels may act as an important selective factor on the CO2-concentrating mechanism (CCM) of cyanobacteria. We investigated genetic diversity in the CCM of Microcystis aeruginosa, a species producing harmful cyanobacterial blooms in many lakes worldwide. All 20 investigated Microcystis strains contained complete genes for two CO2 uptake systems, the ATP-dependent bicarbonate uptake system BCT1 and several carbonic anhydrases (CAs). However, 12 strains lacked either the high-flux bicarbonate transporter BicA or the high-affinity bicarbonate transporter SbtA. Both genes, bicA and sbtA, were located on the same operon, and the expression of this operon is most likely regulated by an additional LysR-type transcriptional regulator (CcmR2). Strains with only a small bicA fragment clustered together in the phylogenetic tree of sbtAB, and the bicA fragments were similar in strains isolated from different continents. This indicates that a common ancestor may first have lost most of its bicA gene and subsequently spread over the world. Growth experiments showed that strains with sbtA performed better at low inorganic carbon (Ci) conditions, whereas strains with bicA performed better at high Ci conditions. This offers an alternative explanation of previous competition experiments, as our results reveal that the competition at low CO2 levels was won by a specialist with only sbtA, whereas a generalist with both bicA and sbtA won at high CO2 levels. Hence, genetic and phenotypic variation in Ci uptake systems provide Microcystis with the potential for microevolutionary adaptation to changing CO2 conditions, with a selective advantage for bicA-containing strains in a high-CO2 world.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Genes Bacterianos , Variación Genética , Microcystis/genética , Microcystis/metabolismo , Bicarbonatos/metabolismo , Microcystis/clasificación , Microcystis/crecimiento & desarrollo , Operón , Filogenia , Sodio/metabolismo
11.
ISME J ; 5(9): 1438-50, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21390081

RESUMEN

Climate change scenarios predict a doubling of the atmospheric CO(2) concentration by the end of this century. Yet, how rising CO(2) will affect the species composition of aquatic microbial communities is still largely an open question. In this study, we develop a resource competition model to investigate competition for dissolved inorganic carbon in dense algal blooms. The model predicts how dynamic changes in carbon chemistry, pH and light conditions during bloom development feed back on competing phytoplankton species. We test the model predictions in chemostat experiments with monocultures and mixtures of a toxic and non-toxic strain of the freshwater cyanobacterium Microcystis aeruginosa. The toxic strain was able to reduce dissolved CO(2) to lower concentrations than the non-toxic strain, and became dominant in competition at low CO(2) levels. Conversely, the non-toxic strain could grow at lower light levels, and became dominant in competition at high CO(2) levels but low light availability. The model captured the observed reversal in competitive dominance, and was quantitatively in good agreement with the results of the competition experiments. To assess whether microcystins might have a role in this reversal of competitive dominance, we performed further competition experiments with the wild-type strain M. aeruginosa PCC 7806 and its mcyB mutant impaired in microcystin production. The microcystin-producing wild type had a strong selective advantage at low CO(2) levels but not at high CO(2) levels. Our results thus demonstrate both in theory and experiment that rising CO(2) levels can alter the community composition and toxicity of harmful algal blooms.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Eutrofización , Agua Dulce/microbiología , Microcistinas/metabolismo , Microcystis/crecimiento & desarrollo , Microcistinas/genética , Microcystis/química , Microcystis/clasificación , Microcystis/metabolismo
12.
Ecol Lett ; 12(12): 1326-35, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19754885

RESUMEN

The elemental composition of primary producers reflects the availability of light, carbon and nutrients in their environment. According to the carbon-nutrient balance hypothesis, this has implications for the production of secondary metabolites. To test this hypothesis, we investigated a family of toxins, known as microcystins, produced by harmful cyanobacteria. The strain Microcystis aeruginosa HUB 5-2-4, which produces several microcystin variants of different N:C stoichiometry, was cultured in chemostats supplied with various combinations of nitrate and CO(2). Excess supply of both nitrogen and carbon yielded high cellular N:C ratios accompanied by high cellular contents of total microcystin and the nitrogen-rich variant microcystin-RR. Comparable patterns were found in Microcystis-dominated lakes, where the relative microcystin-RR content increased with the seston N:C ratio. In total, our results are largely consistent with the carbon-nutrient balance hypothesis, and warn that a combination of rising CO(2) and nitrogen enrichment will affect the microcystin composition of harmful cyanobacteria.


Asunto(s)
Dióxido de Carbono/metabolismo , Microcistinas/biosíntesis , Microcystis/metabolismo , Nitrógeno/metabolismo , Agua Dulce/análisis , Microbiología del Agua
13.
Ecol Appl ; 16(1): 313-27, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16705982

RESUMEN

To prevent flooding of the Dutch delta, former estuaries have been impounded by the building of dams and sluices. Some of these water bodies, however, experience major ecological problems. One of the problem areas is the former Volkerak estuary that was turned into a freshwater lake in 1987. From the early 1990s onward, toxic Microcystis blooms dominate the phytoplankton of the lake every summer. Two management strategies have been suggested to suppress these harmful algal blooms: flushing the lake with fresh water or reintroducing saline water into the lake. This study aims at an advance assessment of these strategies through the development of a mechanistic model of the population dynamics of Microcystis. To calibrate the model, we monitored the benthic and pelagic Microcystis populations in the lake during two years. Field samples of Microcystis were incubated in the laboratory to estimate growth and mortality rates as functions of light, temperature, and salinity. Recruitment and sedimentation rates were measured in the lake, using traps, to quantify benthic-pelagic coupling of the Microcystis populations. The model predicts that flushing with fresh water will suppress Microcystis blooms when the current flushing rate is sufficiently increased. Furthermore, the inlet of saline water will suppress Microcystis blooms for salinities exceeding 14 g/L. Both management options are technically feasible. Our study illustrates that quantitative ecological knowledge can be a helpful tool guiding large-scale water management.


Asunto(s)
Eutrofización/fisiología , Microcystis/crecimiento & desarrollo , Microbiología del Agua , Contaminantes del Agua/análisis , Purificación del Agua/métodos , Abastecimiento de Agua , Animales , Sedimentos Geológicos/análisis , Luz , Microcystis/patogenicidad , Fósforo/metabolismo , Dinámica Poblacional , Ríos , Estaciones del Año , Cloruro de Sodio , Temperatura , Factores de Tiempo , Contaminantes del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...