Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Rev ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085047

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and non-essential genes, CRISPR interference (CRISPRi) was developed. This gene silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to non-model microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions and potential alternatives.

2.
STAR Protoc ; 5(2): 102984, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38592975

RESUMEN

Bacterial persisters constitute a small fraction of cells that transiently display multidrug tolerance, allowing them to survive antibiotic treatment and to establish a new population upon recovery from the persistent state. Here, we present a protocol to quantify post-antibiotic persister recovery kinetics and physiological states at the single-cell level. We describe steps for sample preparation, technical setup, and data acquisition using spectrophotometry. Our assay allows for the elucidation of genes and mechanisms involved in persister survival. For complete details on the use and execution of this protocol, please refer to Wilmaerts et al.1.


Asunto(s)
Antibacterianos , Escherichia coli , Análisis de la Célula Individual , Espectrofotometría , Escherichia coli/fisiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Espectrofotometría/métodos , Análisis de la Célula Individual/métodos , Cinética , Pruebas de Sensibilidad Microbiana/métodos
3.
EMBO Rep ; 24(8): e57309, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395716

RESUMEN

Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Evolución Biológica , Ambiente , Farmacorresistencia Bacteriana/genética
4.
Nucleic Acids Res ; 51(7): 3420-3435, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36864742

RESUMEN

Obg is a widely conserved and essential GTPase in bacteria, which plays a central role in a large range of important cellular processes, such as ribosome biogenesis, DNA replication, cell division and bacterial persistence. Nevertheless, the exact function of Obg in these processes and the interactions it makes within the associated pathways remain largely unknown. Here, we identify the DNA-binding TrpD2 protein YbiB as an interactor of the Escherichia coli Obg (ObgE). We show that both proteins interact with high affinity in a peculiar biphasic fashion, and pinpoint the intrinsically disordered and highly negatively charged C-terminal domain of ObgE as a main driver for this interaction. Molecular docking and X-ray crystallography, together with site-directed mutagenesis, are used to map the binding site of this ObgE C-terminal domain within a highly positively charged groove on the surface of the YbiB homodimer. Correspondingly, ObgE efficiently inhibits the binding of DNA to YbiB, indicating that ObgE competes with DNA for binding in the positive clefts of YbiB. This study thus forms an important step for the further elucidation of the interactome and cellular role of the essential bacterial protein Obg.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Unión al GTP Monoméricas , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Simulación del Acoplamiento Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo
5.
Microorganisms ; 10(3)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35336183

RESUMEN

The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more information is needed on the genetic determinants promoting conjugation. Here, we focus on which bacterial host factors in the donor assist transfer of conjugative plasmids. We introduced the broad-host-range plasmid pKJK10 into a diverse collection of 113 Escherichia coli strains and measured by flow cytometry how effectively each strain transfers its plasmid to a fixed E. coli recipient. Differences in conjugation efficiency of up to 2.7 and 3.8 orders of magnitude were observed after mating for 24 h and 48 h, respectively. These differences were linked to the underlying donor strain genetic variants in genome-wide association studies, thereby identifying candidate genes involved in conjugation. We confirmed the role of fliF, fliK, kefB and ucpA in the donor ability of conjugative elements by validating defects in the conjugation efficiency of the corresponding lab strain single-gene deletion mutants. Based on the known cellular functions of these genes, we suggest that the motility and the energy supply, the intracellular pH or salinity of the donor affect the efficiency of plasmid transfer. Overall, this work advances the search for targets for the development of conjugation inhibitors, which can be administered alongside antibiotics to more effectively treat bacterial infections.

6.
Methods Mol Biol ; 2357: 3-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34590248

RESUMEN

To date, we are living in a postantibiotic era in which several human pathogens have developed multidrug resistance and very few new antibiotics are being discovered. In addition to the problem of antibiotic resistance, every bacterial population harbors a small fraction of transiently antibiotic-tolerant persister cells that can survive lethal antibiotic attack. Upon cessation of the treatment, these persister cells wake up and give rise to a new, susceptible population. Studies conducted over the past two decades have demonstrated that persister cells are key players in the recalcitrance of chronic infections and that they contribute to antibiotic resistance development. As a consequence, the scientific interest in persistence has increased tremendously and while some questions remain unanswered, many important insights have been brought to light thanks to the development of dedicated techniques. In this chapter, we provide an overview of well-established methods in the field and recent advances that have facilitated the investigation of persister cells and we highlight the challenges to be tackled in future persistence research.


Asunto(s)
Bacterias , Infección Persistente , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos
7.
Methods Mol Biol ; 2357: 197-208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34590260

RESUMEN

For long, persistence research has focused primarily on disentangling mechanisms of persister state entry. Due to the rapid advances in the field of single-cell techniques and newly obtained insights in the persister phenotype, studying persister awakening has been unlocked and it has gained much interest in the scientific community. However, a framework on how this research should be conducted is currently lacking. Therefore, we here present a method to detect and validate genes important for persister awakening.


Asunto(s)
Vigilia , Antibacterianos/farmacología
8.
J Vis Exp ; (172)2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34180895

RESUMEN

Urinary tract infections (UTI) rank among the most common bacterial infections in humans and are routinely treated with empirical antibiotics. However, due to increasing microbial resistance, the efficacy of the most used antibiotics has declined. To find alternative treatment options, there is a great need for a better understanding of the UTI pathogenesis and the mechanisms that determine UTI susceptibility. In order to investigate this in an animal model, a reproducible, non-invasive assay to study the course of UTI is indispensable. For years, the gold standard for the enumeration of bacterial load has been the determination of Colony Forming Units (CFU) for a particular sample volume. This technique requires post-mortem organ homogenates and serial dilutions, limiting data output and reproducibility. As an alternative, bioluminescence imaging (BLI) is gaining popularity to determine the bacterial load. Labeling pathogens with a lux operon allow for the sensitive detection and quantification in a non-invasive manner, thereby enabling longitudinal follow-up. So far, the adoption of BLI in UTI research remains limited. This manuscript describes the practical implementation of BLI in a mouse urinary tract infection model. Here, a step-by-step guide for culturing bacteria, intravesical instillation and imaging is provided. The in vivo correlation with CFU is examined and a proof-of-concept is provided by comparing the bacterial load of untreated infected animals with antibiotic-treated animals. Furthermore, the advantages, limitations, and considerations specific to the implementation of BLI in an in vivo UTI model are discussed. The implementation of BLI in the UTI research field will greatly facilitate research on the pathogenesis of UTI and the discovery of new ways to prevent and treat UTI.


Asunto(s)
Infecciones Bacterianas , Infecciones Urinarias , Animales , Antibacterianos/uso terapéutico , Estudios de Seguimiento , Ratones , Reproducibilidad de los Resultados , Infecciones Urinarias/tratamiento farmacológico
9.
FEMS Microbiol Lett ; 368(11)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34114031

RESUMEN

The Hok/Gef family consists of structurally similar, single-span membrane peptides that all contain a positively charged N-terminal domain, an α-helix and a periplasmic C-terminal domain. Hok/Gef peptides have previously been described to play distinct physiological roles. Indeed, while HokB has been implicated in bacterial persistence, other members of the Hok/Gef family are known to induce cell lysis. However, the generalizability of previously published studies is problematic, as they have all used different expression systems. Therefore, we conducted a systematic study of the nine Hok/Gef peptides of Escherichia coli. We observed rapid cell death following expression of hokA, hokC, hokD, hokE, pndA1, hok or srnB, while expression of hokB or pndA2 does not result in cell lysis. A remarkable feature of Hok/Gef peptides is the presence of conserved periplasmic tyrosine and/or cysteine residues. For the HokB peptide, one of these residues has previously been implicated in intermolecular dimerization, which is essential for HokB to exert its role in persistence. To assess the role of the periplasmic cysteine and tyrosine residues in other Hok/Gef peptides and to decipher whether these residues determine peptide toxicity, an array of substitution mutants were constructed. We found that these residues are important activators of toxicity for Hok, HokA and HokE peptides. Despite the loss of the cell killing phenotype in HokS31_Y48, HokAS29_S46 and HokES29_Y46, these peptides do not exert a persister phenotype. More research is needed to fully comprehend why HokB is the sole peptide of the Hok/Gef family that mediates persistence.


Asunto(s)
Toxinas Bacterianas/metabolismo , Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Cisteína/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/toxicidad , Viabilidad Microbiana , Mutación , Periplasma/metabolismo , Sistemas Toxina-Antitoxina , Tirosina/genética , Tirosina/metabolismo
10.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861427

RESUMEN

Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*-GTP, but not ObgE*-GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Escherichia coli/química , Guanosina Trifosfato/química , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas Mutantes , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Relación Estructura-Actividad
11.
Mol Microbiol ; 112(5): 1593-1608, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31498933

RESUMEN

Obg is a versatile GTPase that plays a pivotal role in bacterial persistence. We previously showed that the Escherichia coli homolog ObgE exerts this activity through transcriptional activation of a toxin-antitoxin module and subsequent membrane depolarization. Here, we assessed the role of G-domain functionality in ObgE-mediated persistence. Through screening of a mutant library, we identified five obgE alleles (with substitutions G166V, D246G, S270I, N283I and I313N) that have lost their persistence function and no longer activate hokB expression. These alleles support viability of a strain otherwise deprived of ObgE, indicating that ObgE's persistence function can be uncoupled from its essential role. Based on the ObgE crystal structure, we designed two additional mutant proteins (T193A and D286Y), one of which (D286Y) no longer affects persistence. Using isothermal titration calorimetry, stopped-flow experiments and kinetics, we subsequently assessed nucleotide binding and GTPase activity in all mutants. With the exception of the S270I mutant that is possibly affected in protein-protein interactions, all mutants that have lost their persistence function display severely reduced binding to GDP or the alarmone ppGpp. However, we find no clear relation between persistence and GTP or pppGpp binding nor with GTP hydrolysis. Combined, our results signify an important step toward understanding biochemical determinants underlying persistence.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Relación Estructura-Actividad , Activación Transcripcional/genética
12.
Mol Cell ; 75(5): 1031-1042.e4, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31327636

RESUMEN

Every bacterial population harbors a small subpopulation of so-called persisters that are transiently antibiotic tolerant. These persisters are associated with the recalcitrance of chronic infections because they can recolonize the host after antibiotic removal. Although several effectors have been described to induce persistence, persister cell awakening is poorly understood. We previously reported that the toxin HokB induces persistence via pore formation, resulting in membrane depolarization and ATP leakage. We now delineate mechanisms responsible for the awakening of HokB-induced persisters. We show that HokB dimerization by the oxidoreductase DsbA is essential for pore formation and peptide stability. Pores are disassembled via DsbC-mediated monomerization, which targets HokB for DegQ-mediated degradation. Finally, pore disassembly allows membrane repolarization by the electron transport chain, supporting cells to resume growth. These results provide a detailed view of both the formation and awakening of HokB-induced persister cells.


Asunto(s)
Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciales de la Membrana/fisiología , Proteolisis , Serina Endopeptidasas/metabolismo , Toxinas Bacterianas/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Serina Endopeptidasas/genética
13.
Trends Genet ; 35(6): 401-411, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31036343

RESUMEN

All bacterial populations harbor a small fraction of transiently antibiotic-tolerant cells called persisters. These phenotypic variants compromise successful antibiotic treatment because they are held responsible for the relapse of many chronic infections. In addition, studies employing experimental evolution have demonstrated that persistence contributes to the development of antibiotic resistance. Persisters are typically described as dormant cells. However, recent findings indicate a role for active mechanisms in the formation and maintenance of the persister phenotype. This review summarizes novel insights into the molecular mechanisms of persister formation and awakening, focusing on changes in cell physiology mediated by persistence effectors.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Farmacorresistencia Bacteriana , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos/genética , Replicación del ADN , Metabolismo Energético/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Transcripción Genética
14.
mBio ; 9(4)2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108166

RESUMEN

Bacterial populations harbor a small fraction of cells that display transient multidrug tolerance. These so-called persister cells are extremely difficult to eradicate and contribute to the recalcitrance of chronic infections. Several signaling pathways leading to persistence have been identified. However, it is poorly understood how the effectors of these pathways function at the molecular level. In a previous study, we reported that the conserved GTPase Obg induces persistence in Escherichia coli via transcriptional upregulation of the toxin HokB. In the present study, we demonstrate that HokB inserts in the cytoplasmic membrane where it forms pores. The pore-forming capacity of the HokB peptide is demonstrated by in vitro conductance measurements on synthetic and natural lipid bilayers, revealing an asymmetrical conductance profile. Pore formation is directly linked to persistence and results in leakage of intracellular ATP. HokB-induced persistence is strongly impeded in the presence of a channel blocker, thereby providing a direct link between pore functioning and persistence. Furthermore, the activity of HokB pores is sensitive to the membrane potential. This sensitivity presumably results from the formation of either intermediate or mature pore types depending on the membrane potential. Taken together, these results provide a detailed view on the mechanistic basis of persister formation through the effector HokB.IMPORTANCE There is increasing awareness of the clinical importance of persistence. Indeed, persistence is linked to the recalcitrance of chronic infections, and evidence is accumulating that persister cells constitute a pool of viable cells from which resistant mutants can emerge. Unfortunately, persistence is a poorly understood process at the mechanistic level. In this study, we unraveled the pore-forming activity of HokB in E. coli and discovered that these pores lead to leakage of intracellular ATP, which is correlated with the induction of persistence. Moreover, we established a link between persistence and pore activity, as the number of HokB-induced persister cells was strongly reduced using a channel blocker. The latter opens opportunities to reduce the number of persister cells in a clinical setting.


Asunto(s)
Adenosina Trifosfato/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Porinas/metabolismo , Tolerancia a Medicamentos
15.
Nat Commun ; 9(1): 2231, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884781

RESUMEN

CRISPR advances genome engineering by directing endonuclease sequence specificity with a guide RNA molecule (gRNA). For precisely targeting a gene for modification, each genetic construct requires a unique gRNA. By generating a gRNA against the flippase recognition target (FRT) site, a common genetic element shared by multiple genetic collections, CRISPR-FRT circumvents this design constraint to provide a broad platform for fast, scarless, off-the-shelf genome engineering.


Asunto(s)
Sistemas CRISPR-Cas , ADN Nucleotidiltransferasas/metabolismo , Edición Génica/métodos , ARN Guía de Kinetoplastida/metabolismo , Sitios de Unión/genética , ADN Nucleotidiltransferasas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Genoma Bacteriano/genética , Modelos Genéticos , Mutación , ARN Guía de Kinetoplastida/genética
16.
FEMS Microbiol Rev ; 42(2): 116-136, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365084

RESUMEN

Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.


Asunto(s)
Ciclo Celular/fisiología , Escherichia coli/fisiología , Ciclo Celular/genética , Escherichia coli/citología , Escherichia coli/genética , Genoma Bacteriano
17.
Mol Biol Evol ; 34(11): 2927-2943, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961727

RESUMEN

Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well.


Asunto(s)
Adaptación Fisiológica/genética , Etanol/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Etanol/química , Evolución Molecular , Redes Reguladoras de Genes/genética , Genoma , Mutación/genética , Tasa de Mutación , Fenotipo , Análisis de Secuencia de ADN/métodos
18.
Front Microbiol ; 8: 1193, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28702018

RESUMEN

Cell division is a vital part of the cell cycle that is fundamental to all life. Despite decades of intense investigation, this process is still incompletely understood. Previously, the essential GTPase ObgE, which plays a role in a myriad of basic cellular processes (such as initiation of DNA replication, chromosome segregation, and ribosome assembly), was proposed to act as a cell cycle checkpoint in Escherichia coli by licensing chromosome segregation. We here describe the effect of a mutant isoform of ObgE (ObgE∗) that causes cell death by irreversible arrest of the cell cycle at the stage of cell division. Notably, chromosome segregation is allowed to proceed normally in the presence of ObgE∗, after which cell division is blocked. Under conditions of rapid growth, ongoing cell cycles are completed before cell cycle arrest by ObgE∗ becomes effective. However, cell division defects caused by ObgE∗ then elicit lysis through formation of membrane blebs at aberrant division sites. Based on our results, and because ObgE was previously implicated in cell cycle regulation, we hypothesize that the mutation in ObgE∗ disrupts the normal role of ObgE in cell division. We discuss how ObgE∗ could reveal more about the intricate role of wild-type ObgE in division and cell cycle control. Moreover, since Obg is widely conserved and essential for viability, also in eukaryotes, our findings might be applicable to other organisms as well.

19.
J Oral Microbiol ; 9(1): 1300366, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473880

RESUMEN

In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections.

20.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28460660

RESUMEN

While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy.


Asunto(s)
Escherichia coli/genética , Escherichia coli/fisiología , Tasa de Mutación , Adaptación Biológica , Escherichia coli/efectos de los fármacos , Etanol/toxicidad , Selección Genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA