Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728394

RESUMEN

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Asunto(s)
Antígenos de Neoplasias , Linfocitos T CD8-positivos , Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Macaca mulatta , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Neoplasias/inmunología , Humanos , Vacunas contra el Cáncer/inmunología , Presentación de Antígeno/inmunología , Línea Celular Tumoral , Masculino , Citomegalovirus/inmunología , Mesotelina , Fosfatasa Ácida
2.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33766941

RESUMEN

Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex II (MHC-II) and MHC-E but not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citomegalovirus/metabolismo , Vectores Genéticos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/metabolismo , Vacunas contra el SIDAS/inmunología , Animales , Línea Celular , Citomegalovirus/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/metabolismo , Vectores Genéticos/genética , Antígenos de Histocompatibilidad Clase I/genética , Ligandos , Macaca mulatta , Fragmentos de Péptidos/genética , Transporte de Proteínas , Virus de la Inmunodeficiencia de los Simios , Antígenos HLA-E
3.
J Gen Virol ; 100(3): 497-510, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30694168

RESUMEN

Bovine herpesvirus 1 (BoHV-1)-encoded UL49.5 (a homologue of herpesvirus glycoprotein N) can combine different functions, regulated by complex formation with viral glycoprotein M (gM). We aimed to identify the mechanisms governing the immunomodulatory activity of BoHV-1 UL49.5. In this study, we addressed the impact of gM/UL49.5-specific regions on heterodimer formation, folding and trafficking from the endoplasmic reticulum (ER) to the trans-Golgi network (TGN) - events previously found to be responsible for abrogation of the UL49.5-mediated inhibition of the transporter associated with antigen processing (TAP). We first established, using viral mutants, that no other viral protein could efficiently compensate for the chaperone function of UL49.5 within the complex. The cytoplasmic tail of gM, containing putative trafficking signals, was dispensable either for ER retention of gM or for the release of the complex. We constructed cell lines with stable co-expression of BoHV-1 gM with chimeric UL49.5 variants, composed of the BoHV-1 N-terminal domain fused to the transmembrane region (TM) from UL49.5 of varicella-zoster virus or TM and the cytoplasmic tail of influenza virus haemagglutinin. Those membrane-anchored N-terminal domains of UL49.5 were sufficient to form a complex, yet gM/UL49.5 folding and ER-TGN trafficking could be affected by the UL49.5 TM sequence. Finally, we found that leucine substitutions in putative glycine zipper motifs within TM helices of gM resulted in strong reduction of complex formation and decreased ability of gM to interfere with UL49.5-mediated major histocompatibility class I downregulation. These findings highlight the importance of gM/UL49.5 transmembrane domains for the biology of this conserved herpesvirus protein complex.


Asunto(s)
Enfermedades de los Bovinos/virología , Retículo Endoplásmico/virología , Aparato de Golgi/virología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Bovinos , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/química , Herpesvirus Bovino 1/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
4.
PLoS One ; 12(11): e0187899, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29121670

RESUMEN

Human cytomegalovirus (HCMV) depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC), membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM) cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-ß-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells.


Asunto(s)
Membrana Celular/metabolismo , Citomegalovirus/fisiología , Fibroblastos/virología , Proteómica/métodos , Tetraspaninas/metabolismo , Internalización del Virus , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Integrinas/química , Integrinas/metabolismo , Marcaje Isotópico , Dominios Proteicos/efectos de los fármacos , Tetraspaninas/química , Tetraspaninas/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , beta-Ciclodextrinas/farmacología
5.
PLoS Pathog ; 12(8): e1005868, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27580123

RESUMEN

The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Evasión Inmune , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Animales , Humanos , Células K562 , Macaca fascicularis , Glicoproteínas de Membrana/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Proteínas Virales/inmunología
6.
J Virol ; 89(17): 8687-700, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085158

RESUMEN

UNLABELLED: Varicella-zoster virus (VZV) causes chickenpox upon primary infection and establishes latency in ganglia. Reactivation from latency causes herpes zoster, which may be complicated by postherpetic neuralgia. Innate immunity mediated by interferon and proinflammatory cytokines represents the first line of immune defense upon infection and reactivation. VZV is known to interfere with multiple innate immune signaling pathways, including the central transcription factor NF-κB. However, the role of these inhibitory mechanisms in vivo is unknown. Simian varicella virus (SVV) infection of rhesus macaques recapitulates key aspects of VZV pathogenesis, and this model thus permits examination of the role of immune evasion mechanisms in vivo. Here, we compare SVV and VZV with respect to interference with NF-κB activation. We demonstrate that both viruses prevent ubiquitination of the NF-κB inhibitor IκBα, whereas SVV additionally prevents IκBα phosphorylation. We show that the ORF61 proteins of VZV and SVV are sufficient to prevent IκBα ubiquitination upon ectopic expression. We further demonstrate that SVV ORF61 interacts with ß-TrCP, a subunit of the SCF ubiquitin ligase complex that mediates the degradation of IκBα. This interaction seems to inactivate SCF-mediated protein degradation in general, since the unrelated ß-TrCP target Snail is also stabilized by ORF61. In addition to ORF61, SVV seems to encode additional inhibitors of the NF-κB pathway, since SVV with ORF61 deleted still prevented IκBα phosphorylation and degradation. Taken together, our data demonstrate that SVV interferes with tumor necrosis factor alpha (TNF-α)-induced NF-κB activation at multiple levels, which is consistent with the importance of these countermechanisms for varicella virus infection. IMPORTANCE: The role of innate immunity during the establishment of primary infection, latency, and reactivation by varicella-zoster virus (VZV) is incompletely understood. Since infection of rhesus macaques by simian varicella virus (SVV) is used as an animal model of VZV infection, we characterized the molecular mechanism by which SVV interferes with innate immune activation. Specifically, we studied how SVV prevents activation of the transcription factor NF-κB, a central factor in eliciting proinflammatory responses. The identification of molecular mechanisms that counteract innate immunity might ultimately lead to better vaccines and treatments for VZV, since overcoming these mechanisms, either by small-molecule inhibition or by genetic modification of vaccine strains, is expected to reduce the pathogenic potential of VZV. Moreover, using SVV infection of rhesus macaques, it will be possible to study how increasing the vulnerability of varicella viruses to innate immunity will impact viral pathogenesis.


Asunto(s)
Herpesvirus Humano 3/genética , Proteínas I-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Varicela/inmunología , Varicela/virología , Modelos Animales de Enfermedad , Activación Enzimática , Eliminación de Gen , Células HEK293 , Herpesvirus Humano 3/inmunología , Humanos , Evasión Inmune/inmunología , Inmunidad Innata/inmunología , Macaca mulatta , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Fosforilación , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , Ubiquitinación , Carga Viral , Proteínas Virales/genética , Activación Viral/inmunología , Proteínas con Repetición de beta-Transducina/metabolismo
7.
PLoS Pathog ; 11(5): e1004901, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25973608

RESUMEN

Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses.


Asunto(s)
Infecciones por Herpesviridae/metabolismo , Interacciones Huésped-Patógeno , Interferón Tipo I/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Varicellovirus/fisiología , Animales , Línea Celular , Cercopithecinae , Varicela/inmunología , Varicela/metabolismo , Varicela/patología , Varicela/virología , ADN Recombinante/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 3/inmunología , Herpesvirus Humano 3/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Inmunidad Innata , Interferón Tipo I/antagonistas & inhibidores , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/antagonistas & inhibidores , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes/metabolismo , Factores de Transcripción STAT/genética , Varicellovirus/inmunología
8.
PLoS Pathog ; 11(4): e1004743, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25880312

RESUMEN

Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Evasión Inmune/inmunología , Proteínas Virales/inmunología , Virosis/inmunología , Animales , Evolución Biológica , Humanos , Evasión Inmune/genética , Filogenia , Virosis/genética , Latencia del Virus/inmunología
9.
J Virol ; 87(12): 6943-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23596286

RESUMEN

Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus's restricted host and cell type tropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251 monoclonal antibodies (MAbs) against 59 of the 71 (83%) currently known unique VZV proteins to characterize VZV protein expression in vitro and in situ. Using this new set of MAbs, 44 viral proteins were detected by Western blotting (WB) and indirect immunofluorescence (IF); 13 were detected by WB only, and 2 were detected by IF only. A large proportion of viral proteins was analyzed for the first time in the context of virus infection. Our study revealed the subcellular localization of 46 proteins, 14 of which were analyzed in detail by confocal microscopy. Seven viral proteins were analyzed in time course experiments and showed a cascade-like temporal gene expression pattern similar to those of other herpesviruses. Furthermore, selected MAbs tested positive on human skin lesions by using immunohistochemistry, demonstrating the wide applicability of the MAb collection. Finally, a significant portion of the VZV-specific antibodies reacted with orthologs of simian varicella virus (SVV), thus enabling the systematic analysis of varicella in a nonhuman primate model system. In summary, this study provides insight into the potential function of numerous VZV proteins and novel tools to systematically study VZV and SVV pathogenesis.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Herpesvirus Humano 3/metabolismo , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Varicela/virología , Células Epiteliales/virología , Técnica del Anticuerpo Fluorescente Indirecta , Herpes Zóster/virología , Herpesvirus Humano 3/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Proteómica , Piel/inmunología , Piel/virología
10.
Mol Immunol ; 48(15-16): 2038-51, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21764135

RESUMEN

Viral infections are counteracted by virus-specific cytotoxic T cells that recognize the infected cell via MHC class I (MHC I) molecules presenting virus-derived peptides. The loading of the peptides onto MHC I molecules occurs in the endoplasmic reticulum (ER) and is facilitated by the peptide loading complex. A key player in this complex is the transporter associated with antigen processing (TAP), which translocates the viral peptides from the cytosol into the ER. Herpesviruses have developed many strategies to evade cytotoxic T cells. Several members of the genus Varicellovirus encode a UL49.5 protein that prevents peptide transport through TAP. These include bovine herpesvirus (BoHV) 1, BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, pseudorabies virus, felid herpesvirus 1, and equine herpesvirus 1 and 4. BoHV-1 UL49.5 inhibits TAP by preventing conformational changes essential for peptide transport and by inducing degradation of the TAP complex. UL49.5 consists of an ER luminal N-terminal domain, a transmembrane domain and a cytosolic C-terminal tail domain. In this study, the following features of UL49.5 were deciphered: (1) chimeric constructs of BoHV-1 and VZV UL49.5 attribute the lack of TAP inhibition by VZV UL49.5 to its ER-luminal domain, (2) the ER-luminal and TM domains of UL49.5 are required for efficient interaction with and inhibition of TAP, (3) the C-terminal RXRX sequence is essential for TAP degradation by BoHV-1 UL49.5, and (4) in addition to the RXRX sequence, the cytoplasmic tail of BoHV-1 UL49.5 carries a motif that is required for efficient TAP inhibition by the protein. A model is presented depicting how the different domains of UL49.5 may block the translocation of peptides by TAP and target TAP for proteasomal degradation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Varicellovirus/química , Varicellovirus/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Transportadoras de Casetes de Unión a ATP/inmunología , Línea Celular , Separación Celular , Citometría de Flujo , Humanos , Immunoblotting , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Varicellovirus/inmunología , Proteínas del Envoltorio Viral/metabolismo
11.
Mol Immunol ; 48(6-7): 835-45, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21292324

RESUMEN

Herpesviruses escape elimination by cytotoxic T lymphocytes through specific interference with the antigen-presenting function of MHC class I (MHC I) molecules. The transporter associated with antigen processing (TAP) forms a bottleneck in the MHC I antigen presentation pathway. The fact that multiple viruses, especially herpesviruses, encode molecules blocking TAP function is a case in point. The action of these viral immuno evasins is usually potent and very specific, making these proteins valuable tools for studying the cell biology of antigen presentation, including alternative antigen processing pathways. Yet, no dedicated TAP inhibitor has been described for any of the mouse herpesviruses. To permit the use of immuno evasins derived from non-mouse herpesviruses in mouse models, we assessed the cross-species activity of four TAP inhibitors and one tapasin inhibitor in the context of three different mouse haplotypes, H-2(b), H-2(d), and H-2(k). Two of the four TAP inhibitors, the bovine herpesvirus 1-encoded UL49.5 and the human cytomegalovirus (HCMV)-encoded US6 protein, potently inhibited mouse TAP. ICP47 and BNLF2a, encoded by herpes simplexvirus 1 and Epstein-Barr virus, respectively, failed to inhibit TAP in all mouse cells tested. Previous work, however, demonstrated that US6 did not cross the mouse species barrier. We now show that substitution of the cysteine residue at position 108 was responsible for this lack of activity. The HCMV-encoded tapasin inhibitor US3 efficiently downregulated H-2(d) molecules on 3T3 cells, but not in other cell lines tested. Finally, we show that synthetic peptides comprising the functional domain of US6 can be exploited as a versatile TAP inhibitor. In conclusion, a complete overview is presented of the applicability of herpesvirus-encoded TAP and tapasin inhibitors in mouse cells of different genetic background.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Herpesviridae/inmunología , Evasión Inmune/inmunología , Proteínas Virales/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Transportadoras de Casetes de Unión a ATP/inmunología , Secuencia de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Bovinos , Cisteína/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Haplotipos/genética , Células HeLa , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Evasión Inmune/efectos de los fármacos , Interferón gamma/farmacología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Péptidos/química , Péptidos/farmacología , Estructura Terciaria de Proteína , Especificidad de la Especie
12.
PLoS One ; 6(1): e14493, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21253016

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable.


Asunto(s)
Evasión Inmune , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología , Citotoxicidad Inmunológica , Humanos , Inmunidad , Células Asesinas Naturales/inmunología , Simplexvirus/inmunología
13.
Curr Opin Immunol ; 23(1): 96-103, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21146386

RESUMEN

Upon infecting a host, viruses are confronted by a coordinated and multi-faceted immune response. Indeed, evolutionary combat between virus and host has contributed signally to the host's development of a formidable innate and adaptive immune defense arsenal, and to the virus' acquisition of effective means to evade it. Cytotoxic T lymphocytes play a key role in the elimination of virus-infected cells, which they detect through recognition of virus-derived peptides displayed at the cell surface in the context of MHC class I molecules. This highly sensitive recognition system is a prime target for immune evasion strategies deployed by many viruses, particularly large DNA viruses such as herpesviruses and poxviruses. Elucidation of the mode of action of the immune evasion proteins encoded by these viruses has not only provided new insights into viral pathogenesis, but has also led to the discovery of hitherto unknown cell biological and immunological phenomena. Moreover, viral immune evasion proteins constitute extremely useful tools to block defined stages of the MHC class I presentation pathway, not only for research purposes, but also for clinical applications.


Asunto(s)
Inmunidad Celular , Linfocitos T/inmunología , Virosis/inmunología , Animales , Presentación de Antígeno , Antígenos de Histocompatibilidad/inmunología , Humanos
14.
J Virol ; 85(5): 2351-63, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159875

RESUMEN

The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Regulación hacia Abajo , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Línea Celular , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/clasificación , Herpesvirus Bovino 1/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Varicellovirus/clasificación , Varicellovirus/genética , Varicellovirus/inmunología , Proteínas del Envoltorio Viral/genética
15.
J Immunol ; 185(11): 6508-17, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20980626

RESUMEN

Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Presentación de Antígeno/genética , Linfocitos T CD8-positivos/virología , Línea Celular , Células Cultivadas , Células Clonales , Técnicas de Cocultivo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/virología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/aislamiento & purificación , Técnicas de Transferencia de Gen , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/inmunología , Humanos , Evasión Inmune/genética , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/patología , Proteínas Estructurales Virales/genética
16.
Vet Microbiol ; 143(1): 89-100, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20303681

RESUMEN

Herpesviruses have evolved several effective strategies to counter the host immune response. Chief among these is inhibition of the host MHC class I antigen processing and presentation pathway, thereby reducing the presentation of virus-derived epitopes on the surface of the infected cell. This review summarizes the mechanisms used by herpesviruses to achieve this goal, including shut-down of MHC class I molecule synthesis, blockage of proteasome-mediated peptide generation and prevention of TAP-mediated peptide transport. Furthermore, herpesvirus proteins can retain MHC class I molecules in the endoplasmic reticulum, or direct their retrograde translocation from the endoplasmic reticulum or endocytosis from the plasma membrane, with subsequent degradation. The resulting down-regulation of cell surface MHC class I peptide complexes thwarts the ability of cytotoxic T lymphocytes to recognize and eliminate virus-infected cells. The subversion of the natural killer cell response by herpesvirus proteins and microRNAs is also discussed.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Herpesviridae/inmunología , Evasión Inmune , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/inmunología , Linfocitos T Citotóxicos/inmunología
17.
Cell Host Microbe ; 6(5): 422-32, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19917497

RESUMEN

Downregulation of MHC class I on the cell surface is an immune evasion mechanism shared by many DNA viruses, including cowpox virus. Previously, a cowpox virus protein, CPXV203, was shown to downregulate MHC class I. Here we report that CPXV12 is the only other MHC class I-regulating protein of cowpox virus and that it uses a mechanism distinct from that of CPXV203. Whereas CPXV203 retains fully assembled MHC class I by exploiting the KDEL-mediated endoplasmic reticulum retention pathway, CPXV12 binds to the peptide-loading complex and inhibits peptide loading on MHC class I molecules. Viruses deleted of both CPXV12 and CPXV203 demonstrated attenuated virulence in a CD8 T cell-dependent manner. These data demonstrate that CPXV12 and CPXV203 proteins combine to ablate MHC class I expression and abrogate antiviral CD8 T cell responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas Portadoras/metabolismo , Virus de la Viruela Vacuna/fisiología , Viruela Vacuna/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Evasión Inmune , Proteínas Virales/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Virus de la Viruela Vacuna/patogenicidad , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteínas Virales/genética , Proteínas Virales/inmunología
18.
J Immunol ; 181(7): 4894-907, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18802093

RESUMEN

TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Herpesvirus Bovino 1/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas del Envoltorio Viral/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Línea Celular Transformada , Línea Celular Tumoral , Células Cultivadas , Dimerización , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Ratas , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/genética
19.
PLoS Pathog ; 4(5): e1000080, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18516302

RESUMEN

Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Herpesvirus Bovino 1/inmunología , Herpesvirus Équido 1/inmunología , Herpesvirus Suido 1/inmunología , Varicellovirus/fisiología , Proteínas del Envoltorio Viral/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Presentación de Antígeno , Bovinos , Línea Celular Tumoral , Supervivencia Celular/inmunología , Perros , Herpesvirus Bovino 1/genética , Herpesvirus Équido 1/genética , Herpesvirus Suido 1/genética , Caballos , Humanos , Transporte de Proteínas , Recombinación Genética , Porcinos , Transducción Genética , Varicellovirus/patogenicidad , Proteínas del Envoltorio Viral/genética
20.
J Biol Chem ; 283(19): 13428-36, 2008 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-18321854

RESUMEN

Cytotoxic T lymphocytes eliminate infected cells upon surface display of antigenic peptides on major histocompatibility complex I molecules. To promote immune evasion, UL49.5 of several varicelloviruses interferes with the pathway of major histocompatibility complex I antigen processing. However, the inhibition mechanism has not been elucidated yet. Within the macromolecular peptide-loading complex we identified the transporter associated with antigen processing (TAP1 and TAP2) as the prime target of UL49.5. Moreover, we determined the active oligomeric state and crucial elements of the viral factor. Remarkably, the last two residues of the cytosolic tail of UL49.5 are essential for endoplasmic reticulum (ER)-associated proteasomal degradation of TAP. However, this process strictly requires additional signaling of an upstream regulatory element in the ER lumenal domain of UL49.5. Within this new immune evasion mechanism, we show for the first time that additive elements of a small viral factor and their signaling across the ER membrane are essential for targeted degradation of a multi-subunit membrane complex.


Asunto(s)
Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/inmunología , Péptidos/inmunología , Transducción de Señal/inmunología , Varicellovirus/inmunología , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/inmunología , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Alineación de Secuencia , Spodoptera , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...