Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Microbiol Spectr ; 12(4): e0212723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38445857

RESUMEN

The present paper includes a meta-analysis of literature data on 318 species of fungi belonging to 34 orders in their response to 8 antifungal agents (amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole, posaconazole, terbinafine, and voriconazole). Main trends of MIC results at the ordinal level were visualized. European Committee on Antimicrobial Susceptibility Testing and Clinical & Laboratory Standards Institute (CLSI) clinical breakpoints were used as the staff gauge to evaluate MIC values ranging from resistance to susceptibility, which were subsequently compared with a phylogenetic tree of the fungal kingdom. Several orders (Hypocreales, Microascales, and Mucorales) invariably showed resistance. Also the basidiomycetous orders Agaricales, Polyporales, Sporidiales, Tremellales, and Trichosporonales showed relatively high degrees of azole multi-resistance, while elsewhere in the fungal kingdom, including orders with numerous pathogenic and opportunistic species, that is, Onygenales, Chaetothyiales, Sordariales, and Malasseziales, in general were susceptible to azoles. In most cases, resistance vs susceptibility was consistently associated with phylogenetic distance, members of the same order showing similar behavior. IMPORTANCE: A kingdom-wide the largest set of published wild-type antifungal data comparison were analyzed. Trends in resistance in taxonomic groups (monophyletic clades) can be compared with the phylogeny of the fungal kingdom, eventual relationships between fungus-drug interaction and evolution can be described.


Asunto(s)
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacología , Filogenia , Pruebas de Sensibilidad Microbiana , Voriconazol , Azoles/farmacología , Farmacorresistencia Fúngica
2.
J Fungi (Basel) ; 10(1)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38248960

RESUMEN

Whole genome sequencing (WGS) is widely used for outbreak analysis of bacteriology and virology but is scarcely used in mycology. Here, we used WGS for genotyping Aspergillus fumigatus isolates from a potential Aspergillus outbreak in an intensive care unit (ICU) during construction work. After detecting the outbreak, fungal cultures were performed on all surveillance and/or patient respiratory samples. Environmental samples were obtained throughout the ICU. WGS was performed on 30 isolates, of which six patient samples and four environmental samples were related to the outbreak, and twenty samples were unrelated, using the Illumina NextSeq 550. A SNP-based phylogenetic tree was created from outbreak samples and unrelated samples. Comparative analysis (WGS and short tandem repeats (STRs), microsatellite loci analysis) showed that none of the strains were related to each other. The lack of genetic similarity suggests the accumulation of Aspergillus spores in the hospital environment, rather than a single source that supported growth and reproduction of Aspergillus fumigatus. This supports the hypothesis that the Aspergillus outbreak was likely caused by release of Aspergillus fumigatus spores during construction work. Indeed, no new Aspergillus cases were observed in the ICU after cessation of construction. This study demonstrates that WGS is a suitable technique for examining inter-strain relatedness of Aspergillus fumigatus in the setting of an outbreak investigation.

3.
Semin Respir Crit Care Med ; 45(1): 32-40, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38196063

RESUMEN

Aspergilli may cause various pulmonary diseases in humans, including allergic bronchopulmonary aspergillosis (ABPA), chronic pulmonary aspergillosis (CPA), and acute invasive pulmonary aspergillosis (IPA). In addition, chronic colonization may occur in cystic fibrosis (CF). Aspergillus fumigatus represents the main pathogen, which may employ different morphotypes, for example, conidia, hyphal growth, and asexual sporulation, in the various Aspergillus diseases. These morphotypes determine the ease by which A. fumigatus can adapt to stress by antifungal drug exposure, usually resulting in one or more resistance mutations. Key factors that enable the emergence of resistance include genetic variation and selection. The ability to create genetic variation depends on the reproduction mode, including, sexual, parasexual, and asexual, and the population size. These reproduction cycles may take place in the host and/or in the environment, usually when specific conditions are present. Environmental resistance is commonly characterized by tandem repeat (TR)-mediated mutations, while in-host resistance selection results in single-resistance mutations. Reported cases from the literature indicate that environmental resistance mutations are almost exclusively present in patients with IA indicating that the risk for in-host resistance selection is very low. In aspergilloma, single-point mutations are the dominant resistance genotype, while in other chronic Aspergillus diseases, for example, ABPA, CPA, and CF, both TR-mediated and single-resistance mutations are reported. Insights into the pathogenesis of resistance selection in various Aspergillus diseases may help to improve diagnostic and therapeutic strategies.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica , Fibrosis Quística , Aspergilosis Pulmonar , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis Pulmonar/tratamiento farmacológico , Aspergilosis Pulmonar/diagnóstico , Aspergilosis Pulmonar/microbiología , Aspergillus fumigatus/genética , Aspergillus , Aspergilosis Broncopulmonar Alérgica/tratamiento farmacológico , Fibrosis Quística/tratamiento farmacológico , Enfermedad Crónica , Infección Persistente
5.
J Fungi (Basel) ; 9(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998909

RESUMEN

Aspergillus fumigatus has been found to coinfect patients with severe SARS-CoV-2 virus infection, leading to COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA all-cause mortality rate is approximately 50% and may be complicated by azole resistance. Genomic epidemiology can help shed light on the genetics of A. fumigatus causing CAPA, including the prevalence of resistance-associated alleles. We present a population genomic analysis of 21 CAPA isolates from four European countries with these isolates compared against 240 non-CAPA A. fumigatus isolates from a wider population. Bioinformatic analysis and antifungal susceptibility testing were performed to quantify resistance and identify possible genetically encoded azole-resistant mechanisms. The phylogenetic analysis of the 21 CAPA isolates showed that they were representative of the wider A. fumigatus population with no obvious clustering. The prevalence of phenotypic azole resistance in CAPA was 14.3% (n = 3/21); all three CAPA isolates contained a known resistance-associated cyp51A polymorphism. The relatively high prevalence of azole resistance alleles that we document poses a probable threat to treatment success rates, warranting the enhanced surveillance of A. fumigatus genotypes in these patients. Furthermore, potential changes to antifungal first-line treatment guidelines may be needed to improve patient outcomes when CAPA is suspected.

6.
Clin Pharmacokinet ; 62(12): 1695-1699, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819504

RESUMEN

Isavuconazole exposure-response relationships have been studied with a focus on total rather than unbound exposure, assuming a constant unbound fraction of 1%. We observed a median (range) unbound fraction of 1.59% (0.42-5.30%) in patients. This highly variable protein binding asks for re-evaluation of current pharmacokinetic and pharmacodynamic targets for isavuconazole.


Asunto(s)
Nitrilos , Piridinas , Humanos , Unión Proteica , Nitrilos/farmacocinética , Piridinas/uso terapéutico , Piridinas/farmacocinética , Triazoles/farmacocinética
7.
Clin Pharmacokinet ; 62(12): 1701-1711, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819503

RESUMEN

BACKGROUND AND OBJECTIVES: Isavuconazole is a broad-spectrum antifungal agent for the management of invasive fungal disease. Optimised drug exposure is critical for patient outcomes, specifically in the critically ill population. Solid information on isavuconazole pharmacokinetics including protein binding in patients in the intensive care unit is scarce. We aimed to describe the total and unbound isavuconazole pharmacokinetics and subsequently propose a dosage optimisation strategy. METHODS: A prospective multi-centre study in adult intensive care unit patients receiving isavuconazole was performed. Blood samples were collected on eight timepoints over one dosing interval between days 3-7 of treatment and optionally on one timepoint after discontinuation. Total and unbound isavuconazole pharmacokinetics were analysed by means of population pharmacokinetic modelling using NONMEM. The final model was used to perform simulations to assess exposure described by the area under the concentration-time curve and propose an adaptive dosing approach. RESULTS: Population pharmacokinetics of total and unbound isavuconazole were best described by an allometrically scaled two-compartment model with a saturable protein-binding model and interindividual variability on clearance and the maximum binding capacity. The median (range) isavuconazole unbound fraction was 1.65% (0.83-3.25%). After standard dosing, only 35.8% of simulated patients reached a total isavuconazole area under the concentration-time curve > 60 mg·h/L at day 14. The proposed adaptive dosing strategy resulted in an increase to 62.3% of patients at adequate steady-state exposure. CONCLUSIONS: In critically ill patients, total isavuconazole exposure is reduced and protein binding is highly variable. We proposed an adaptive dosing approach to enhance early treatment optimisation in this high-risk population. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04777058.


Asunto(s)
Antibacterianos , Enfermedad Crítica , Adulto , Humanos , Antibacterianos/farmacocinética , Enfermedad Crítica/terapia , Estudios Prospectivos , Triazoles/farmacocinética
8.
Microbiol Spectr ; : e0183123, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37772821

RESUMEN

Fungal rhinosinusitis (FRS) is a common problem worldwide, with an increasing burden in arid climate regions. Aspergillus species are the most common causative agents involved. In the present study, we investigated the prevalence, molecular characterization, and antifungal susceptibility of opportunists causing FRS in Sudan on the basis of strains collected over a period of 5 years. ß-Tubulin and calmodulin sequencing were used for species identification, and antifungal susceptibility profiles were evaluated by the protocol of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Predominant species belonged to the Aspergillus flavus complex (n = 244), A. terreus complex (n = 16), A. fumigatus complex (n = 7), and other fungi (n = 17). Molecular identification of 94 strains of Aspergillus revealed the following species: A. flavus (n = 88), A. terreus (n = 1), A. citrinoterreus (n = 2), A. fumigatus (n = 1), A. caespitosus (n = 1), and A. sydowii (n = 1). Several A. flavus and an A. fumigatus isolates showed reduced susceptibility to azoles (minimum inhibitory concentrations above the clinical breakpoints or epidemiological cutoff values). Despite several mutations revealed in cyp51A of these isolates, none could be directly linked to azole resistance. Molecular identification of fungi causing FRS is useful to identify cryptic species and for epidemiologic studies. IMPORTANCE Fungal rhinosinusitis (FRS) is a significant clinical problem in arid regions. This study provides new insights into the prevalence, etiology, and antifungal susceptibility of FRS pathogens in Sudan, where the disease burden is high. Aspergillus species, particularly the A. flavus complex, were identified as the primary FRS pathogens in the region, with some evidence of antifungal resistance. The molecular identification of fungal species causing FRS is useful for detecting antifungal resistance, identifying cryptic species, and characterizing the epidemiology of the disease. The emergence of Azole resistance Aspergilli in Sudan highlights the need for continued surveillance and appropriate use of antifungal agents. These findings have important implications for clinical management, public health policy, and future research on FRS. Publishing this study in Microbiology Spectrum would enable other researchers and clinicians to build on these findings, ultimately improving the diagnosis, treatment, and prevention of FRS.

9.
J Fungi (Basel) ; 9(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37623579

RESUMEN

The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.

10.
Infect Drug Resist ; 16: 5395-5403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621698

RESUMEN

Introduction: The emergence of resistance in Trichophyton rubrum to azoles and terbinafine has become increasingly evident in recent years, necessitating the development of novel antifungal drugs and the exploration of new indications for existing agents. Methods: In this study, we retrospectively evaluated the in vitro antifungal activity of 3 echinocandins (anidulafungin, caspofungin, and micafungin) against 73 clinical isolates of T. rubrum collected from a teaching hospital in Shanghai, China, using EUCAST E.DEF 9.3.1 with minor modification. We also reviewed the susceptibility of T. rubrum to echinocandins globally by literature searching. Results: Our findings revealed that micafungin exhibited the lowest modal minimum effective concentration (MEC) value (0.08 mg/L, n = 28) and the lowest geometric mean (GM) MEC value (0.014 mg/L) among the 73 isolates of T. rubrum tested, followed by anidulafungin with a modal MEC value of 0.016 mg/L (n = 67) and a GM of 0.018 mg/L. Caspofungin displayed a higher modal MEC value of 0.5 mg/L (n = 35) and a GM of 0.308 mg/L. Despite variations in methodologies, similar results were obtained from the review of five relevant studies included in our analysis. Discussion: Echinocandins exhibited excellent in vitro activity against T. rubrum isolates, with micafungin and anidulafungin demonstrating greater potency than caspofungin. These findings suggest that echinocandins could be considered as potential treatment options for managing recalcitrant dermatophytoses resulting from the emergence of resistance. However, it is important to note that the clinical efficacy of these in vitro findings has yet to be established and warrants further investigation.

12.
mSphere ; 8(4): e0007623, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37260230

RESUMEN

Germination of inhaled Aspergillus fumigatus conidia is a necessary sequitur for infection. Germination of conidia starts with the breaking of dormancy, which is initiated by an increase of the cellular perimeter in a process termed isotropic growth. This swelling phase is followed by polarized growth, resulting in the formation of a germ tube. The multinucleate tubular cells exhibit tip growth from the hyphae, after which lateral branches emerge to form the mycelial network. The regulatory mechanisms governing conidial germination are not well defined. In this study, we identified a novel role for the transcription factor SltA in the orchestration of germination and hyphal development. Conidia lacking sltA fail to appropriately regulate isotropic growth and begin to swell earlier and subsequently switch to polarized growth faster. Additionally, hyphal development is distorted in a ∆sltA isolate as hyphae are hyper-branching and wider, and show branching at the apical tip. ∆sltA conidia are more tolerant to cell wall stressors on minimal medium compared to the wild-type (WT) strain. A transcriptome analysis of different stages of early growth was carried out to assess the regulatory role of SltA. Null mutants generated for three of the most dysregulated genes showed rapid germ tube emergence. Distinct from the phenotype observed for ∆sltA, conidia from these strains lacked defects in isotropic growth, but switched to polarized growth faster. Here, we characterize and describe several genes in the regulon of SltA, highlighting the complex nature of germination.IMPORTANCEAspergillus fumigatus is the main human fungal pathogen causing aspergillosis. For this fungus, azoles are the most commonly used antifungal drugs for treatment of aspergillosis. However, the prevalence of azole resistance is alarmingly increasing and linked with elevated mortality. Germination of conidia is crucial within its asexual life cycle and plays a critical role during the infection in the human host. Precluding germination could be a promising strategy considering the role of germination in Aspergillus spp. pathogenicity. Here, we identify a novel role for SltA in appropriate maintenance of dormancy, germination, and hyphal development. Three genes in the regulon of SltA were also essential for appropriate germination of conidia. With an expanding knowledge of germination and its different morphotypes, more advances can be made toward potential anti-germination targets for therapy.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Factores de Transcripción/genética , Hifa , Aspergilosis/microbiología , Aspergillus
13.
Med Mycol ; 61(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37381179

RESUMEN

The (1→3)-ß-D-glucan (BDG) is a component of the fungal cell wall that can be detected in serum and used as an adjunctive tool for the diagnosis of invasive mold infections (IMI) in patients with hematologic cancer or other immunosuppressive conditions. However, its use is limited by modest sensitivity/specificity, inability to differentiate between fungal pathogens, and lack of detection of mucormycosis. Data about BDG performance for other relevant IMI, such as invasive fusariosis (IF) and invasive scedosporiosis/lomentosporiosis (IS) are scarce. The objective of this study was to assess the sensitivity of BDG for the diagnosis of IF and IS through systematic literature review and meta-analysis. Immunosuppressed patients diagnosed with proven or probable IF and IS, with interpretable BDG data were eligible. A total of 73 IF and 27 IS cases were included. The sensitivity of BDG for IF and IS diagnosis was 76.7% and 81.5%, respectively. In comparison, the sensitivity of serum galactomannan for IF was 27%. Importantly, BDG positivity preceded the diagnosis by conventional methods (culture or histopathology) in 73% and 94% of IF and IS cases, respectively. Specificity was not assessed because of lacking data. In conclusion, BDG testing may be useful in patients with suspected IF or IS. Combining BDG and galactomannan testing may also help differentiating between the different types of IMI.


IF and IS are severe fungal infections for which diagnosis is often delayed. This meta-analysis shows that beta-glucan testing in serum had a sensitivity of about 80% for IF/IS and could detect the disease earlier compared to conventional diagnostic tests.


Asunto(s)
Fusariosis , Infecciones Fúngicas Invasoras , beta-Glucanos , Animales , Fusariosis/diagnóstico , Fusariosis/veterinaria , Infecciones Fúngicas Invasoras/diagnóstico , Infecciones Fúngicas Invasoras/veterinaria , Sensibilidad y Especificidad
14.
J Fungi (Basel) ; 9(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37233269

RESUMEN

Histoplasmosis, caused by the thermally dimorphic fungus Histoplasma spp., is a disease with a broad clinical spectrum, presenting from asymptomatic/flu-like symptoms to progressive disseminated disease in people with immunosuppression. In recent years, the concept of histoplasmosis as a disease restricted to the American continent has changed, as now histoplasmosis is reported in many regions around the world. In Latin America, histoplasmosis represents a threat, especially in people with advanced HIV disease (AHD). Diagnosis of histoplasmosis in people living with HIV (PLHIV) is challenging due to the low index of suspicion of the disease, non-specificity of signs and symptoms, and limited access to specific laboratory testing, while the diagnostic delay is significantly associated with mortality. In the last decade, novel diagnostic tests have been developed for the rapid detection of histoplasmosis, such as commercial kits for antigen detection. Furthermore, advocacy groups were created that presented histoplasmosis as a public health problem, with emphasis on patients at risk of progressive disseminated disease. This review aims to discuss the impact of histoplasmosis associated with AHD in Latin America and the strategies employed to tackle histoplasmosis, from the implementation of laboratory testing to disease advocacy and public health interventions.

15.
Int J Antimicrob Agents ; 62(1): 106846, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37187336

RESUMEN

The COVID-19 pandemic has highlighted the detrimental effect of secondary pathogens in patients with a primary viral insult. In addition to superinfections with bacterial pathogens, invasive fungal infections were increasingly reported. The diagnosis of pulmonary fungal infections has always been challenging; however, it became even more problematic in the setting of COVID-19, particularly regarding the interpretation of radiological findings and mycology test results in patients with these infections. Moreover, prolonged hospitalization in ICU, coupled with underlying host factors. such as preexisting immunosuppression, use of immunomodulatory agents, and pulmonary compromise, caused additional vulnerability to fungal infections in this patient population. In addition, the heavy workload, redeployment of untrained staff, and inconsistent supply of gloves, gowns, and masks during the COVID-19 outbreak made it harder for healthcare workers to strictly adhere to preventive measures for infection control. Taken together, these factors favored patient-to-patient spread of fungal infections, such as those caused by Candida auris, or environment-to-patient transmission, including nosocomial aspergillosis. As fungal infections were associated with increased morbidity and mortality, empirical treatment was overly used and abused in COVID-19-infected patients, potentially contributing to increased resistance in fungal pathogens. The aim of this paper was to focus on essential elements of antifungal stewardship in COVID-19 for three fungal infections, COVID-19-associated candidemia (CAC), -pulmonary aspergillosis (CAPA), and -mucormycosis (CAM).


Asunto(s)
COVID-19 , Candidemia , Humanos , Antifúngicos/uso terapéutico , COVID-19/epidemiología , Pandemias , Candidemia/tratamiento farmacológico , Hongos
16.
J Antimicrob Chemother ; 78(7): 1569-1585, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37220664

RESUMEN

Invasive candidiasis (IC) is a serious infection caused by several Candida species, and the most common fungal disease in hospitals in high-income countries. Despite overall improvements in health systems and ICU care in the last few decades, as well as the development of different antifungals and microbiological techniques, mortality rates in IC have not substantially improved. The aim of this review is to summarize the main issues underlying the management of adults affected by IC, focusing on specific forms of the infection: IC developed by ICU patients, IC observed in haematological patients, breakthrough candidaemia, sanctuary site candidiasis, intra-abdominal infections and other challenging infections. Several key challenges need to be tackled to improve the clinical management and outcomes of IC patients. These include the lack of global epidemiological data for IC, the limitations of the diagnostic tests and risk scoring tools currently available, the absence of standardized effectiveness outcomes and long-term data for IC, the timing for the initiation of antifungal therapy and the limited recommendations on the optimal step-down therapy from echinocandins to azoles or the total duration of therapy. The availability of new compounds may overcome some of the challenges identified and increase the existing options for management of chronic Candida infections and ambulant patient treatments. However, early identification of patients that require antifungal therapy and treatment of sanctuary site infections remain a challenge and will require further innovations.


Asunto(s)
Candidemia , Candidiasis Invasiva , Humanos , Adulto , Antifúngicos/uso terapéutico , Equinocandinas/uso terapéutico , Candidiasis Invasiva/diagnóstico , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/epidemiología , Candidemia/tratamiento farmacológico
17.
J Clin Microbiol ; 61(5): e0004423, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37097150

RESUMEN

Galactomannan (GM) testing of bronchoalveolar lavage (BAL) fluid samples has become an essential tool to diagnose invasive pulmonary aspergillosis (IPA) and is part of diagnostic guidelines. Enzyme-linked immunosorbent assays (ELISAs) (enzyme immunoassays [EIAs]) are commonly used, but they have a long turnaround time. In this study, we evaluated the performance of an automated chemiluminescence immunoassay (CLIA) with BAL fluid samples. This was a multicenter retrospective study in the Netherlands and Belgium. BAL fluid samples were collected from patients with underlying hematological diseases with a suspected invasive fungal infection. Diagnosis of IPA was based on the 2020 European Organisation for Research and Treatment of Cancer (EORTC)/Mycoses Study Group Education and Research Consortium (MSGERC) consensus definitions. GM results were reported as optical density index (ODI) values. ODI cutoff values for positive results that were evaluated were 0.5, 0.8, and 1.0 for the EIA and 0.16, 0.18, and 0.20 for the CLIA. Probable IPA cases were compared with two control groups, one with no evidence of IPA and another with no IPA or possible IPA. Qualitative agreement was analyzed using Cohen's κ, and quantitative agreement was analyzed by Spearman's correlation. We analyzed 141 BAL fluid samples from 141 patients; 66 patients (47%) had probable IPA, and 56 cases remained probable IPA when the EIA GM result was excluded as a criterion, because they also had positive culture and/or duplicate positive PCR results. Sixty-three patients (45%) had possible IPA and 12 (8%) had no IPA. The sensitivity and specificity of the two tests were quite comparable, and the overall qualitative agreement between EIA and CLIA results was 81 to 89%. The correlation of the actual CLIA and EIA values was strong at 0.72 (95% confidence interval, 0.63 to 0.80). CLIA has similar performance, compared to the gold-standard EIA, with the benefits of faster turnaround because batching is not required. Therefore, CLIA can be used as an alternative GM assay for BAL fluid samples.


Asunto(s)
Enfermedades Hematológicas , Aspergilosis Pulmonar Invasiva , Aspergilosis Pulmonar , Humanos , Estudios Retrospectivos , Líquido del Lavado Bronquioalveolar/microbiología , Aspergilosis Pulmonar Invasiva/diagnóstico , Mananos/análisis , Sensibilidad y Especificidad
18.
Clin Infect Dis ; 77(1): 38-45, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905147

RESUMEN

BACKGROUND: Invasive aspergillosis (IA) by a triazole-resistant Aspergillus fumigatus is associated with high mortality. Real-time resistance detection will result in earlier initiation of appropriate therapy. METHODS: In a prospective study, we evaluated the clinical value of the AsperGenius polymerase chain reaction (PCR) assay in hematology patients from 12 centers. This PCR assay detects the most frequent cyp51A mutations in A. fumigatus conferring azole resistance. Patients were included when a computed tomography scan showed a pulmonary infiltrate and bronchoalveolar fluid (BALf) sampling was performed. The primary end point was antifungal treatment failure in patients with azole-resistant IA. RESULTS: Of 323 patients enrolled, complete mycological and radiological information was available for 276 (94%), and probable IA was diagnosed in 99/276 (36%). Sufficient BALf for PCR testing was available for 293/323 (91%). Aspergillus DNA was detected in 116/293 (40%) and A. fumigatus DNA in 89/293 (30%). The resistance PCR was conclusive in 58/89 (65%) and resistance detected in 8/58 (14%). Two had a mixed azole-susceptible/azole-resistant infection. In the 6 remaining patients, treatment failure was observed in 1. Galactomannan positivity was associated with mortality (P = .004) while an isolated positive Aspergillus PCR was not (P = .83). CONCLUSIONS: Real-time PCR-based resistance testing may help to limit the clinical impact of triazole resistance. In contrast, the clinical impact of an isolated positive Aspergillus PCR on BALf seems limited. The interpretation of the EORTC/MSGERC PCR criterion for BALf may need further specification (eg, minimum cycle threshold value and/or PCR positive on >1 BALf sample).


Asunto(s)
Aspergilosis , Infecciones Fúngicas Invasoras , Aspergilosis Pulmonar Invasiva , Humanos , Estudios Prospectivos , Aspergilosis Pulmonar Invasiva/diagnóstico , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/microbiología , Azoles/farmacología , Azoles/uso terapéutico , Aspergilosis/diagnóstico , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergillus , Aspergillus fumigatus , Infecciones Fúngicas Invasoras/diagnóstico , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Triazoles/farmacología , Triazoles/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica
19.
Front Cell Infect Microbiol ; 13: 1094182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794001

RESUMEN

Introduction: This study was intended to investigate the clinical features and predisposing factors of fungal keratitis (FK), as well as molecular identification and antifungal susceptibility of causative agents in Tehran, Iran. Methods: This cross-sectional study was carried out from April 2019 to May 2021. All fungi isolates were identified using conventional methods and were confirmed by DNA-PCR-based molecular assays. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) was used to identify yeast species. Minimum inhibitory concentrations (MIC) of eight antifungal agents were assessed according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) microbroth dilution reference method. Results: Fungal etiology was confirmed in 86 (7.23%) of 1189 corneal ulcers. A significant predisposing factor for FK was ocular trauma caused by plant materials. Therapeutic penetrating keratoplasty (PKP) was required in 60.4% of cases. The predominant fungal species isolated was Fusarium spp. (39.5%) followed by Aspergillus spp. (32.5%) and Candida spp. (16.2%). Discussion: The MIC results indicate that amphotericin B may be appropriate for treating FK caused by Fusarium species. FK caused by Candida spp. can be treated with flucytosine, voriconazole, posaconazole, miconazole, and caspofungin. In developing countries such as Iran, corneal infection due to filamentous fungi is a common cause of corneal damage. In this region, fungal keratitis is observed primarily within the context of agricultural activity and subsequent ocular trauma. Fungal keratitis can be managed better with understanding the "local" etiologies and antifungal susceptibility patterns.


Asunto(s)
Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Fusarium , Queratitis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Irán/epidemiología , Estudios Transversales , Úlcera de la Córnea/microbiología , Queratitis/microbiología , Factores de Riesgo
20.
J Crit Care ; 76: 154272, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36801598

RESUMEN

PURPOSE: COVID-19 associated pulmonary aspergillosis (CAPA) is associated with increased morbidity and mortality in ICU patients. We investigated the incidence of, risk factors for and potential benefit of a pre-emptive screening strategy for CAPA in ICUs in the Netherlands/Belgium during immunosuppressive COVID-19 treatment. MATERIALS AND METHODS: A retrospective, observational, multicentre study was performed from September 2020-April 2021 including patients admitted to the ICU who had undergone diagnostics for CAPA. Patients were classified based on 2020 ECMM/ISHAM consensus criteria. RESULTS: CAPA was diagnosed in 295/1977 (14.9%) patients. Corticosteroids were administered to 97.1% of patients and interleukin-6 inhibitors (anti-IL-6) to 23.5%. EORTC/MSGERC host factors or treatment with anti-IL-6 with or without corticosteroids were not risk factors for CAPA. Ninety-day mortality was 65.3% (145/222) in patients with CAPA compared to 53.7% (176/328) without CAPA (p = 0.008). Median time from ICU admission to CAPA diagnosis was 12 days. Pre-emptive screening for CAPA was not associated with earlier diagnosis or reduced mortality compared to a reactive diagnostic strategy. CONCLUSIONS: CAPA is an indicator of a protracted course of a COVID-19 infection. No benefit of pre-emptive screening was observed, but prospective studies comparing pre-defined strategies would be required to confirm this observation.


Asunto(s)
COVID-19 , Aspergilosis Pulmonar , Humanos , Incidencia , Tratamiento Farmacológico de COVID-19 , Estudios Prospectivos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...